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Abstract— In a high-end database system, the execution con-
currency level rises continuously in a multiprocessor environment
due to the increase in number of concurrent transactions and
the introduction of multi-core processors. A new challenge for
buffer management to address is to retain its scalability in
responding to the highly concurrent data processing demands
and environment. The page replacement algorithm, a major
component in the buffer management, can seriously degrade
the system’s performance if the algorithm is not implemented
in a scalable way. A lock-protected data structure is used in
most replacement algorithms, where high contention is caused
by concurrent accesses. A common practice is to modify a
replacement algorithm to reduce the contention, such as to
approximate the LRU replacement with the clock algorithm.
Unfortunately, this type of modification usually hurts hit ratios
of original algorithms. This problem may not exist or can be
tolerated in an environment of low concurrency, thus has not
been given enough attention for a long time.

In this paper, instead of making a trade-off between the high
hit ratio of a replacement algorithm and the low lock contention
of its approximation, we propose a system framework, called
BP-Wrapper, that (almost) eliminates lock contention for any
replacement algorithm without requiring any changes to the
algorithm. In BP-Wrapper, we use batching and prefetching
techniques to reduce lock contention and to retain high hit
ratio. The implementation of BP-Wrapper in PostgreSQL version
8.2 adds only about 300 lines of C code. It can increase the
throughput up to two folds compared with the replacement
algorithms with lock contention when running TPC-C-like and
TPC-W-like workloads.

I. INTRODUCTION

A modern database management system normally manages
terabytes of data and processes hundreds of thousands of
transactions concurrently on a powerful multiprocessor sys-
tem. Such a database system demands buffer management be
highly effective to minimize costly disk I/O operations, and be
scalable with the growing number of concurrent transactions
and the increase of the number of processors in the underlying
system. The core of buffer management is the data replacement
algorithm, which makes decisions on which data pages should
be cached in memory to absorb effectively requests for on-
disk data from upper level transaction-processing threads.
The replacement algorithm usually maintains a complex data
structure to track the data-access history of the threads so that
replacement decisions can be made based on the organized
information in the data structure. In a high-end production
system, a large number of threads access data pages frequently

and concurrently. It is desirable that the replacement algorithm
makes replacement decisions both in an effective and scalable
way.

Disk I/O operations are becoming increasingly expensive.
In order to minimize costly disk accesses, a large number
of replacement algorithms and their implementations have
been proposed for databases, virtual memory, and I/O buffers,
focusing on the improvement of hit ratios by organizing and
managing deep page access history. Representative algorithms
include those that address the weaknesses of LRU, such as
LIRS [1], 2Q [2], and ARC [3]. These algorithms usually
take actions upon each I/O access, either a hit or a miss
in the buffer, which include a sequence of updates in their
data structures recording the data access history. Usually the
operations are designed to be simple and efficient to avoid
excess overhead, as they are carried out very frequently.

To guarantee the integrity of their data structures, replace-
ment algorithms carry out their operations in response to
page accesses in a serialized fashion. Thus, to implement
them in multi-tasking systems, lock synchronization is usually
required. In other words, an exclusive lock (a.k.a. latch) must
be secured before the operations are carried out. When a lock
is held by one transaction-processing thread, other threads
requesting the lock have to wait in the form of busy-waiting
and/or context switches for their mutual exclusive operations.

Performance degradation due to lock contention can be
significant in large-scale systems. This subject has been a
major research issue for years (e.g. [4], [5], [6]). Our ex-
periments show that contention on the lock associated with
replacement algorithms may reduce database throughput by
nearly two folds in a 16-processor system. There are two
factors contributing to the performance degradation. One factor
is the frequency of lock requests. Currently, the lock is globally
shared by all transaction-processing threads to coordinate their
page accesses. It is requested every time a thread accesses a
page. Another factor is the cost to acquire a lock, including
changing lock state, busy-waiting, and/or context switches.
Compared to the time spent on the operations protected by the
lock, the cost can be very high. As the number of multi-core
processors in a multi-processor system increases to support
DBMS systems, the performance degradation is expected to
continue to grow since both of the factors can become more
severe in a larger system.
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While the replacement algorithm designers have not paid
particular attention to the lock contention issue, the advantages
of the algorithms, including high hit ratio, could be compro-
mised in real systems. For example, some widely used DBMS
systems, such as postgreSQL, have not adopted advanced
replacement algorithms. Instead, they resorted to the clock-
based approximations of the LRU replacement. Some of the
other DBMS systems, such as Oracle Universal Server [7]
and ADABAS [8], choose to use the distributed lock method
to address the lock contention issue.

The clock-based approximations, such as CLOCK [9],
CLOCK-PRO [10], and CAR [11], usually cannot achieve
the high hit ratio compared to their corresponding original
algorithms (LRU, LIRS, or ARC, respectively). They organize
buffer pages into circular list(s), and use a reference bit or
a reference counter to record access information for each
buffer page. When a page is hit in the buffer, the clock-based
approximations set the reference bit or increment the counter,
instead of modifying the circular list(s) themselves. As a lock
is not required for these operations, their caching performance
is scalable. However, the clock-based approximations can
record only limited history access information, i.e. whether
a page has been accessed or how many times it has been
accessed but not in what order the accesses occur. The lack of
richer history information can hurt their hit ratios. Moreover,
many sophisticated replacement algorithms do not have clock-
based approximations since the access information they need
cannot be approximated by the clock structure. Examples
include the SEQ [12] algorithm and the buffer replacement
policy used in DB2 [13], as they need to know in which order
the buffer pages are accessed for the detection of sequences
and sequential/random access patterns.

In general, lock contention can be reduced by using dis-
tributed locks to reduce lock granularity [4], [5], [6], [14].
However, the approach is not effective in addressing the
issue of lock contention in the replacement algorithms. In the
distributed lock approach, the buffer is divided into multiple
partitions, each of which is protected by a local lock. Data
pages are evenly distributed into the partitions either in a
round-robin manner or through hashing. As only accesses
to the same partition will compete for the same lock, lock
contention can be ameliorated. However, as the recorded
history information is localized to each partition, the lack of
global history information can be harmful to the performance
of the replacement algorithms. For example, the algorithms
that need to detect sequence of accesses cannot retain their
performance advantages when pages in the same sequence
have been distributed into multiple partitions and cannot be
identified as a sequence.

In summary, existing efforts on the research and develop-
ment of replacement algorithms in DBMS systems have been
focused on addressing the trade-offs between high hit ratio of
advanced algorithms and low-lock-contention implementation
in systems. Instead of making a compromise between these
two metrics, our objective is to retain the performance ad-
vantages of advanced replacement algorithms and provide an

efficient framework that makes any replacement algorithms
(almost) lock contention free. With a small FIFO queue
maintained for each DBMS transaction-processing thread, our
framework provides two key scalability supports, which can
be universally applied to any replacement algorithms. One is
batch execution, which amortizes lock contention overhead
among a batch of page accesses. The other is prefetching,
which reduces the average lock-holding time by pre-loading
necessary data for the replacement algorithm into the pro-
cessor cache. We name the framework employing Batching
and Prefetching as BP-Wrapper. Our implementation of BP-
wrapper in PostgreSQL version 8.2.3 has delivered a nearly
two-fold throughput increase by removing almost all lock
contention associated with buffer page replacement for TPC-
W-like and TPC-C-like workloads.

The rest of the paper is organized as follows. In Section
II we briefly describe the role that a replacement algorithm
and its lock play in a typical database system. In Section III
we describe the design of BP-Wrapper. Section IV provides a
comprehensive evaluation of BP-wrapper. Related work is in
Section V, and Section VI concludes the paper.

II. BACKGROUND ON BUFFER MANAGEMENT IN DBMSS

In a DBMS system, its buffer stores a collection of buffer
pages of fixed sizes in the memory space shared by all the
transaction-processing threads in a DBMS. Data pages read
from the hard disk are cached in the buffer to avoid costly
I/O operations if they are expected to be reused in the near
future. The metadata of the buffer pages are organized by the
buffer manager using data structures such as linked lists and
hash tables. The metadata include identifiers of the cached
data pages, statuses of the pages, and pointers to form linked
lists and hash tables.

Figure 1 shows the diagram of a typical buffer manager.
When a data page is requested by a thread, the thread searches
for the buffer page containing the requested data page. Usually
a hash table is used to speed up the searching. If the buffer
page is found (a hit), an operation described by its replacement
algorithm is carried out to update the data structures to reflect
the page access. For example, when a buffer page is requested,
the LRU replacement algorithm removes the buffer page from
the LRU list and inserts it back to the MRU end of the list.
Then the buffer page is returned to complete the request. In
another scenario where the requested data page is not in the
buffer (a miss), the replacement algorithm selects a victim
page and evicts the data in the page to make room for caching
the data to be loaded. The LRU algorithm always selects the
buffer page at the tail of an LRU list as the victim page. When
the data page is read into memory, the buffer page is moved
to the head of the LRU list and returned to satisfy the request.

Because the buffer manager is a central component fre-
quently used by all the transaction-processing threads upon
each page request, simultaneous updates on its data structures
have to be carried out in a controlled fashion to maintain
integrity. DBMSs use exclusive locks for this purpose.
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Looking-up Hash Table

Lock Synchronization

Operations for Replacement Algorithm

Buffer Pool Manager

Buffer Pages Pages Requests

Database

Fig. 1. The diagram of a buffer manager in a typical DBMS. In the
buffer manager, which is enclosed in dashed-line rectangle, looking
up the hash table can be executed concurrently, while operations for
replacement algorithm represented by the shadowed block have to be
serialized.

The use of locks does not limit system scalability for hash
table searching because (1) In the hash table, metadata of
buffer pages are evenly distributed into hash buckets. One
lock for each bucket, instead of a global lock, is used to
control the accesses to the bucket. To keep the searching time
short, usually a large number of buckets are used. Therefore,
the possibility for multiple threads to compete for the same
bucket is low. (2) Multiple threads can search the same bucket
simultaneously if none of them changes the bucket. Hash
buckets are rarely changed as they change only upon misses
and only when two hash buckets are changed for one buffer
miss (one bucket for the victim page, and the other for the
new page). In the DBMSs with a high memory capacity, only
a very small portion of accesses are buffer misses. Therefore,
we will not consider the lock contention on the hash table
searching.

In contrast, the replacement algorithm can severely suffer
from lock contention, which further limits the scalability of
database systems because (1) A replacement algorithm uses
a single lock for its data structure, which is a centralized
hot spot. (2) Most replacement algorithms require an update
of their data structures upon every page access. Therefore,
a thread has to acquire the lock for every page request
and execute the replacement algorithm operations exclusively.
The highly contented lock may dramatically degrade system
performance in a DBMS system running on a multiprocessor
system.

III. MINIMIZING LOCK CONTENTION WITH BP-WRAPPER

In a replacement algorithm, the cost associated with the
use of a lock consists of two parts, namely lock acquisition
cost and lock warm-up cost. Lock acquisition cost is the time
overhead due to the fact that a thread has to block itself when
its requested lock is held by another thread. Depending on
the implementation, the cost can be the CPU cycles for busy
waiting in the spinning lock and/or CPU cycles for context
switches. This cost is determined by the severity of lock
contention among the threads. If there are many processors

in a server that processes a large number of concurrent
transactions, the time spent on the acquisition of a lock can
be significantly higher than a system of smaller scale. In other
words, this cost is directly linked to the scalability of the
replacement algorithm because each page access accompanies
a lock acquisition for the access history to be recorded in a
lock-protected shared data structure.

The lock warm-up cost refers to the cost paid to prepare the
processor cache with the required data to run critical section
code, or the penalty of processor-cache misses incurred by the
transition of computation from non-critical section (code for
transaction processing) into critical section (code for updating
the shared data structure for replacement algorithms). When
a lock is obtained, the data describing the lock as well as the
data set to be accessed by the critical section code may not
yet reside in the processor caches, thus a series of misses may
be experienced to warm up the cache. The concern is that this
miss penalty occurs when a thread holds the lock and there are
probably other threads waiting for the lock. Thus, the impact
of this cost could be amplified. Following the principle of
minimizing the critical section, we aim to eliminate the lock
warm-up cost.

To reduce these two potential lock costs, we design and
integrate two methods in BP-Wrapper. Both methods are
independent of the replacement algorithm itself, so that BP-
Wrapper can be used directly with any replacement algorithms
and to make them highly scalable.

A. Reducing Lock Acquisition Cost Using Batching Technique

As we mentioned, a lock must be acquired before a thread
enters the critical section to carry out its operations on behalf
of the replacement algorithm. Requesting a lock upon a page
miss usually is not a concern because the lock acquisition
cost is negligible compared with the cost of I/O operations. In
addition, there are much fewer misses than hits in a database
system. The challenge is that most replacement algorithms,
especially those recently proposed algorithms that produce
very low miss ratios [1], [2], [3], need to access lock-protected
data for each page access, even if the access is a hit in the
buffer. As we know, lock acquisition cost increases as lock
contention intensifies, and becomes a serious performance
bottleneck when the system scales up.

Replacement algorithms in existing database systems re-
quire one lock-acquisition per page access. The total cost
of lock-acquisitions increases as the page access frequency
increases, which is caused by high concurrency in database
systems. We use a technique called batching to amortize
the cost over multiple page accesses and essentially reduce
the cost. The basic idea is to periodically acquire a lock
after accumulating a set of page accesses, and then to make
corresponding replacement operations within one lock-holding
period. To understand the performance potential of the tech-
nique, we have conducted an experiment in a 16-processor
system (the detailed configuration is described in Section IV)
to measure the duration in which the lock is requested and
held by a thread (lock-holding time) for processing a certain
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Fig. 2. Average lock acquisition and holding time per each page
access with batch size varied from 1 to 64. Both axes in the figure
are in the logarithmic scale. The workload is DBT-1, and the number
of processors is 16.

number (batch size) of page accesses on the lock-protected
data structure for the 2Q replacement algorithm, including
the lock acquisition cost. We varied the batch size from 1
to 64 (i.e. the number of accumulated page accesses before
acquiring a lock is varied from 1 to 64). Figure 2 shows the
lock acquisition and holding time averaged over batch size.
We found that the time is much larger with smaller batch
sizes. While the total execution time in the critical section for
multiple accesses is proportional to the number of accesses,
the measurements convincingly show the effectiveness of our
batching technique. The experiment also shows that a small
number of batch size such as 64 is sufficient to significantly
reduce the lock acquisition cost.

While each page access has to operate on the lock-protected
data, as required by the replacement algorithms, it is usually
unnecessary to carry out the operations immediately after
the page access. There are two unique properties of the
replacement algorithms that provide us with an opportunity to
effectively apply a batching technique to significantly reduce
the frequency of acquiring the lock. First, delaying the oper-
ations on the data structure for replacement algorithms, such
as LRU stack or LIRS stacks [1], will not affect the threads
getting correct data from the buffer, and thus will not affect
the correctness of transaction processing. Second, in a system
with millions of pages (e.g., a server used in our experiments
has 64GB memory, or 8 million 8KB pages.), postponement of
the operations of recording a couple of (e.g., 64) recent page
accesses into the lock-protected data structure would cause
little impact on the performance of the replacement algorithms.
Furthermore, the order in which the batched operations are
executed does not change with the adoption of the batching
technique.

In the batching technique, we set up a FIFO queue for each
transaction-processing thread. For each access hit associated
with a thread, the access history information is recorded in
the thread’s queue. Specifically, when a thread requests a page
and the page is found to be in the buffer, the pointer to the
page is recorded in the FIFO queue of the thread. A buffer
manager using the technique is shown in Figure 3. When
the queue is full or the number of accesses recorded in the

queue reaches a pre-determined threshold, called the batch
threshold, we acquire a lock and then execute the operations
defined by the replacement algorithm once for all the accesses
in the queue in a batching fashion. This procedure is known as
committing the recorded accesses. After the committing, the
queue is emptied. With the FIFO queue, a thread is allowed
to access many pages without requesting a lock for running
the page replacement algorithm, or without paying the lock
acquisition cost.

In the design of the batching technique, an alternative is
to use one common FIFO queue shared by multiple threads.
However, we choose to use a private FIFO queue for each
thread for its following advantages:

• A private FIFO queue keeps the precise order of the page
accesses that occur in the corresponding thread. Keeping
the order is essential in some replacement algorithms like
SEQ [12] because they need the ordering information for
detection of access patterns.

• Recording access information into private FIFO queues
incurs the least synchronization and coherence cost,
which is required for the shared FIFO queue when
multiple threads fill or clear the queue.

Looking-up Hash Table

Lock Synchronization

Operations for Replacement Algorithm

Buffer Manager

Buffer Pages Pages Requests

Database

…

Recording Access Info

Misses Hits

Fig. 3. The diagram of a buffer manager using the batching technique.

Figure 4 presents the pseudo-code describing the batch-
ing technique, including lock-related operations upon a page
hit (replacement for page hit()) and a page miss (replace-
ment for page miss()). As described in the pseudo-code, when
there is a page hit, the access is first recorded in the queue
(Queue[]). Then there are two conditions under which the
committing procedure is activated and the actual replacement
algorithm is executed. The first condition is that there are
sufficient number of accesses in a queue (not fewer than
batch threshold) and the lock is available for free (the outcome
of TryLock() is a success). While the lock acquisition cost is
usually high, it is not desirable to pay the cost for a very
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/* a thread’s FIFO queue whose maximum size is S*/
1 Page *Queue[S];

/* the minimal number of pages in Queue[]
to trigger a committing */

2 #define batch_threshold T
/* current queue position to receive next page */

3 int Tail = 0;
/* called upon a page hit */

4 void replacement_for_page_hit(Page *this_access) {
5 Queue[Tail] <-- this_access;
6 Tail = Tail + 1;
7 if (Tail >= batch_threshold)

/* a non-blocking attempt to acquire lock */
8 trylock_outcome = TryLock();
9 if(trylock_outcome is a failure) {
10 if( Tail < S)
11 return;
12 else
13 Lock();
14 }

/* A lock has been secured. Now commit the pages */
15 For each page P in Queue[]{
16 do what is specified by the replacement

algorithm upon a hit on P;
17 }
18 UnLock();
19 Tail = 0;
20 }

/* called upon a page miss */
21 void replacement_for_page_miss(Page *this_access) {
22 Lock();
23 for each page P in Queue[] {
24 do what is specified by the replacement

algorithm upon a hit on P;
25 }
26 do what is specified by the replacement

algorithm upon a miss on ’this_access’;
27 UnLock();
28 Tail = 0;
29 }

Fig. 4. The pseudo-code for the replacement-algorithm-independent
framework that uses the batching technique to provide the algorithm
with efficient access to the data that needs lock protection.

small number of accesses. TryLock() makes an attempt to get
the lock. If the lock is currently held by another thread, it
fails without blocking its caller thread. Otherwise, the caller
thread gets the lock with a very low cost. Though TryLock()
is inexpensive, we do not use it for every page access to
keep from producing too many lock acquisition attempts and
reducing the chance for a TryLock() to succeed. The second
condition is that the queue is full. In this case, a lock must be
explicitly requested (Lock() in line 13). If either condition is
met, the replacement algorithm starts to carry out its delayed
bookkeeping work on its lock-protected data structure for each
access recorded in the queue. If we take the LRU algorithm
as an example, the work is to move pages involved in every
access to the MRU end of the list. Note that the pseudo-
code actually describes a framework that uses the batching
technique to provide any algorithm with efficient access to the
data that have to be lock-protected, because the description of
the replacement algorithm itself is independent of the batching
technique. No design of an existing replacement algorithm,
which may have been given significant effort for the improve-
ment of its hit ratio, has to be modified to accommodate the
application of the technique for lock overhead reduction. This
is in contrast to the transformation of an algorithm to its
clock approximation for reduced lock contention but with a

compromised replacement performance.

B. Reducing Lock Warm-up Cost Using Prefetching Technique

process2

process1 t

process2

process1 t

cache miss stalls

computation

lock

unlock

prefetching

Entering critical section (without prefetching)

Entering critical section (with prefetching)

Fig. 5. Using prefetching to move the cache miss penalty out of the
lock holding period.

We use a prefetching technique to reduce the lock warm-up
cost, which is part of the lock holding time. In the technique,
we read the data that would be accessed in the critical section
by the replacement algorithm immediately before a lock is
requested. Taking the LRU algorithm as an example, we
read the forward and/or backward pointers involved in the
movement of accessed pages to the MRU end of the page list,
as well as the fields of the lock data structure. A side-effect of
the read is that the data are loaded into the processor cache and
the cache misses otherwise experienced by the critical section
code are removed. The potential benefit of the technique is
illustrated in Figure 5.

The prefetching operation on the shared data without a lock
does not compromise the integrity of the global data structure
used in the replacement algorithm. The prefetching (read)
operation only loads the data into processor cache. It does
not modify any data. Meanwhile, if the prefetched data has
been changed by other threads before they are used by the
thread prefetching them, some hardware mechanism built in
processors will automatically invalidate them from the cache
or update them with their latest values to keep data coherent.

IV. PERFORMANCE EVALUATION

We have implemented the proposed PB-Wrapper frame-
work, including the two lock contention reduction techniques,
on the postgreSQL database system version 8.2.3. PostgreSQL
used LRU and 2Q replacement algorithms in its previous
versions, and gave them up due to the scalability issue.
Since version 8.1, postgreSQL adopted the clock replacement
algorithm in order to improve the scalability of its buffer man-
agement on multi-processor systems. The clock replacement
algorithm does not need a lock upon hit access. In this sense,
it eliminates lock contention and provides optimal scalability.

In the first part of our evaluation, we focus only on the scal-
ability issue, and show that, using BP-Wrapper an advanced
replacement algorithm like 2Q can be as scalable as the clock
replacement algorithm, in spite of their more complex data
structures and operations. In the experiments, we set the buffer
large enough to hold the whole working sets of the benchmarks
and pre-warm the buffer. Thus there are no misses incurred no
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matter which replacement algorithm is used. The performance
differences among the postgreSQL systems with different
buffer management implementations result completely from
the differences in the scalability of their implementations,
rather than hit ratios. Then the better performance we observe
about an implementation, the more scalable it is. With its
optimal scalability, the clock implementation should show the
best performance when the system is scaled up. Thus we test
the scalability of an implementation by measuring how close
its performance is to that of the clock implementation. We
show the results in Section IV-D.

Using the experiments in the first part, we aim to answer
the following questions specifically. (1) Which technique is
more effective in reducing lock contention of a replacement
algorithm, batching or prefetching? (2) Compared with that of
the clock algorithm, how much lock contention can be reduced
for a replacement algorithm using the techniques? (3) Do the
techniques used on a multi-processor platform and a multi-
core platform have different performance impacts?

There exist a variety of advanced replacement algorithms
that can provide excellent performance (much better than
the clock algorithm) in terms of hit ratio. However, while
LRU can be transformed into the clock algorithm, many
of these algorithms are very hard, if not impossible, to be
effectively transformed and thus are not appropriate choices
in an environment of high concurrency. In the second part of
our evaluation, we show that, if no actions are taken to reduce
lock contention, the performance advantages of an advanced
replacement algorithm due to its increased hit ratios can be
compromised in a large scale system. Meanwhile, we show
that our techniques help an advanced replacement algorithm
retain its performance advantage by improving its scalability.

A. Tested Systems

We first modified postgreSQL 8.2.3 by replacing its clock
algorithm with the 2Q algorithm, as a representative of the
advanced replacement algorithms of high hit ratios. This
modified system, which was not optimized for lower lock
contention, is named as postgreSQL-2Q, or simply pg2Q,
and serves as a baseline system in the comparison. Then we
enhanced the baseline system with our BP-Wrapper frame-
work. We enabled the batching technique and the prefetching
technique separately, and have systems named as pgBatching
and pgPref, respectively. We also enabled both batching and
prefetching techniques, and name the system as pgBat-Pre.
The stock postgreSQL 8.2.3 is denoted as pgClock. These
tested systems are summarized in Table I. We also imple-
mented systems by replacing the 2Q algorithm with the last
four systems in the table with the LIRS [1] and MQ [15]
replacement algorithms, respectively. We do not observe sig-
nificant performance differences between the experiments with
these algorithms and those with their 2Q counterparts, and we
do not show their results.

TABLE I
THE SYSTEM NAMES, REPLACEMENT ALGORITHMS, AND

SCALABILITY ENHANCEMENTS OF THE FIVE TESTED

POSTGRESQL SYSTEMS.

Name Replacement Enhancement
pgClock Clock None

pg2Q 2Q None
pgBatching 2Q Batching

pgPref 2Q Prefetching
pgBat-Pre 2Q Batching and Prefetching

B. Implementation Issues

The implementation of batching and prefetching requires
only limited modification of the baseline system. We add fewer
than 300 lines of new code. Most modifications are made
in a single file (src/backend/storage/buffer/freelist.c), which
contains the source code of the replacement algorithm. In
the implementation, each entry in the FIFO queues consists
of two fields: one is a pointer to the meta-data of a buffer
page (BufferDesc structure), and the other stores BufferTag,
which is used to identify a data page. Before an entry is
committed, we first compare the BufferTag in the entry against
the BufferTag in the meta-data of the buffer page to ensure
that the data page has not been invalidated or evicted. If the
buffer still caches the valid data page, we run replacement-
related operations to update the data structure to reflect the
page access. In the 2Q algorithm, if the page is in Am list, it
is moved to the MRU end of the list. In the LIRS algorithm,
it is moved on the LIR or HIR lists. In the MQ algorithm, it
is moved among multiple FIFO queues.

C. Experiment Setup and Workloads

We carried out our experiments on both a traditional unicore
SMP platform and a multi-core platform. The unicore SMP
platform is an SGI Altix 350 SMP server with 16 1.4GHz
Intel Itanium 2 processors and 64GB memory. The storage is
a 2TB LUN on an IBM FAStT600 turbo storage subsystem.
The LUN consists of 9 250GB SATA disks in an 8+P
RAID5 configuration. Operating system is Red Hat Enterprise
Linux AS release 3 with SGI ProPack 3 SP6. The multi-core
platform is a DELL PowerEdge 1900 server, which has two
2.66GHz quad-core Xeon X5355 processors. For the sake of
convenience, we refer to each computing core as a processor as
most operating systems do. So the PowerEdge 1900 server has
8 computing cores, or 8 processors. The memory size is 16GB.
The storage is a RAID5 array with 5 15K RPM SCSI disks.
Operating system is Red Hat Enterprise Linux AS release 5.

We tested the systems with the DBT-1 test kit and the DBT-
2 test kit from OSDL database test suite [16], and a synthetic
benchmark TableScan. DBT-1 simulates the activities of web
users who browse and order items from an on-line bookstore.
It generates a database workload with the same characteris-
tics as that in the TPC-W benchmark specification version
1.7 [17]. The database generated for the experiments includes
information on 100,000 items and 2.9 million customers. DBT-
2 derives from the TPC-C specification version 5.0 [18] and
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provides an on-line transaction processing (OLTP) workload.
In the experiments, we set the number of warehouses to 50.
TableScan simulates sequential scan, one of most commonly
used database operations. It makes concurrent queries, each
of which scans an entire table. Each table consists of 800,000
rows, and each row is 128 bytes long.

In the experiments, we changed the numbers of processors
used by postgreSQL by setting CPU affinity masks of its
back-end processes, which are threads in charge of handling
transactions in postgreSQL. Because a postgreSQL back-end
process blocks itself and yields the processor when it fails
to get a lock due to contention, we make the system over-
committed and the processors always busy by keeping more
active postgreSQL back-end processes than the number of
processors used in each test. In the experiments, we set
the FIFO queue size to 64, and batch threshold to 32 for
pgBatching and pgBat-Pre.

D. Experiments on Scalability

In the experiments, we evaluate the scalability of the five
different postgreSQL systems under the three workloads, re-
spectively, when we increase the numbers of processors from 1
to 16 on the Altix 350 server and from 1 to 8 on the PowerEdge
1900 server. To eliminate page misses during the running of
the workloads, we adjust the shared buffer size to ensure that
the entire working sets are always held in the memory. We
collect the throughputs (number of transactions per second)
and the average response time of the transactions. For systems
pg2Q, pgBatching, pgPref, and pgBat-Pre, we also calculate
average lock contention. A lock contention happens when a
lock request cannot be immediately satisfied and a process
context switch occurs. During the running of a workload,
the average lock contention is defined as the number of lock
contentions per million page accesses. We show throughputs,
average response times, and average lock contention for the
three workloads on the different systems in Figure 6 and
Figure 7 .

When the number of processors is increased, as we expect,
the throughput of pgClock increases almost linearly with it,
and its average response time increases moderately with work-
loads DBT-1 and TableScan. However, with workload DBT-
2, the throughput of pgClock increases sub-linearly and the
average response time increases significantly. This is because
the contention on other locks, such as the one to serialize
Write-Ahead-Logging activities, becomes intensive with the
growing number of processors.

System pg2Q can maintain its scalability only when the
number of processors is less than 4. On the Altix 350, its
throughput saturates when the number of processors is greater
than 8 for DBT-1 and TableScan, and 4 for DBT-2, respectively,
and the average response time increases significantly when
additional processors are added. For workload TableScan,
its throughput even drops by 12.7% when the number of
processors is increased from 8 to 16. When 16 processors are
used, its throughputs are 61.1%, 56.5%, and 66.5% less than
those of pgClock, and its average response times are 1.6, 1.5,

and 1.8 times longer than those of pgClock for workloads DBT-
1, DBT-2, and TableScan, respectively. By examining the plots
of average lock contentions, we see that pg2Q has the highest
number of contentions per million page accesses and the
number increases rapidly with the number of processors (Note
that the numbers are shown in logarithmic scale). Therefore,
these experiments indicate that the lock contention is a major
culprit of the system performance degradation.

We observe a similar trend on the PowerEdge 1900 server.
The throughput of TableScan saturates even earlier, or when
the number of processors reaches 4. The average lock con-
tention numbers indicate that lock contention is more intensive
on the multi-core PowerEdge 1900 than that on the Altix
350, especially with benchmark TableScan. When 8 processors
are used, the average lock contentions on the PowerEdge
1900 are 74.4%, 18.5%, and 270.2% more than those on
the Altix 350 for the three workloads, respectively. Thus,
lock contention causes more performance degradation on the
PowerEdge 1900 than it does on the Altix 350. With 8
processors, the throughputs of system pg2Q are 37.9%, 52.1%,
and 57.2% less than those of pgClock on the PowerEdge 1900
system, while the throughputs of system pg2Q are 30.1%,
51.5%, and 32.6% less than those of pgClock on the Altix
350 system. Similarly, with system pg2Q, lock contention
increases the average response times of the workloads by
larger percentages on the PowerEdge 1900 than it does on
the Altix 350.

The more intensive lock contention on the PowerEdge 1900
server is due to the processors used in the machines. The Xeon
X5355 processors in the PowerEdge 1900 have data prefetch-
ing modules, which can speed up sequential memory accesses
by fetching data speculatively to their last-level caches. How-
ever, Itanium 2 processors do not have such hardware support.
Thus, on the PowerEdge 1900 server, computation outside
of the critical section, which accesses memory sequentially
in general, is accelerated by the prefetching modules, while
the operations of the replacement algorithm protected by the
lock can hardly be accelerated by the prefetching modules
because they usually access memory randomly. Therefore, lock
contention is intensified on the PowerEdge 1900 server as a
larger proportion of time is spent on the critical section than
that on the Altix 350.

Compared with pg2Q, pgPref reduces the average lock
contention by 33.7% to 82.6% on the Altix 350 server and
by 20.8% to 87.5% on the PowerEdge 1900. This is because
prefetching reduces the lock holding time and accordingly
increases the chance to get a free lock. As a result, the
throughputs of pgPref are larger than those of pg2Q by up to
26.1% and the average response times of pgPref are smaller
than those of pg2Q by up to 25.2%. We note that prefetching
is more effective on the Altix 350 than on the PowerEdge
1900. This is because long pipelines and deep out-of-order
execution capability of X5355 processors increase their ability
to tolerate cache misses. Based on this observation, we expect
that the prefetching technique would be more effective in
reducing lock contention on systems with large-scale multi-
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Fig. 6. Throughput, average response time, and average lock contention of five postgreSQL systems (pgClock, pg2Q, pgPref, pgBatching,
and pgBat-Pre) with workloads DBT-1, DBT-2, and TableScan on SGI Altix 350 when the number of processors increases from 1 to 16.
Note that the Y axes of the plots for throughput and average lock contention are in logarithmic scale. We do not show the average lock
contention when only one processor is used because the values are too small to fit in the graphs.

core processors, such as Sun Niagara 2 processors and Azul
vega processors, than it is on the PowerEdge 1900. These pro-
cessors have many in-order computing cores to support more
concurrent threads in a single chip. Thus cache misses usually
have larger performance impact with these processors than
they do with processors having a few out-of-order computing
cores, such as Xeon 5355 processors.

The scalability of system pgPref is as poor as that of pg2Q,
because prefetching cannot reduce lock contention sufficiently,
especially when more than four processors are used, as shown
in the plots of average lock contention. For example, when two
processors are used on the Altix 350 server, it reduces average
contention by 82.4% over pg2Q on average for the three
workloads. When additional processors are used, it reduces

the contention by smaller percentages, 60.2% for 4 processors,
46.3% for 8 processors, and 38.6% for 16 processors. As
we know, the prefetching technique in pgPref reduces lock
contention and thus improves system throughput. However,
with an increased throughput, the lock is requested more
frequently, which offsets the effect of reduced lock contention.
This phenomenon becomes even more apparent with a larger
number of processors.

In the experiments, system pgBatching demonstrates almost
the same scalability as that of pgClock, the optimal algorithm
in scalability. Its throughput curves and average response time
curves overlap with those of pgClock very well when the
number of processors is scaled up. As shown in the figures
for average lock contention, system pgBatching improves
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Fig. 7. Throughput, average response time, and average lock contention of five postgreSQL systems (pgClock, pg2Q, pgPref, pgBatching,
and pgBat-Pre) with workloads DBT-1, DBT-2, and TableScan on DELL PowerEdge 1900 when number of processors increases from 1 to
8. Note that the Y axes of the plots for throughput and average lock contention are in logarithmic scale. We do not show the average lock
contention when only one processor is used because the values are too small to fit in the graphs.

scalability through reducing lock contention by a factor from
197 to over 9000. We notice that average lock contention in
pgBatching with 16 processors is even much lower than that
of pgPref and pg2Q with 2 processors.

Using both batching and prefetching techniques, system
pgBat-Pre can further reduce lock contention compared with
pgBatching. However, the reduced lock contention is not
translated into higher throughput or lower average response
time, as shown in the figures, because the average lock
contention of pgBatching is already very small, and the impact
on performance would be diminished with further decrease.
When 16 processors are used, both pgBatching and pgBat-
Pre have around or fewer than 400 lock contentions in a
million page accesses. When the number of processors keeps

increasing, in particular with the prevalence of multi-core
processors, the lock contention would be more serious and
further reduction of lock contention by pgBat-Pre would help
improve system performance.

E. Parameter Sensitivity Study

System pgBatching uses a small FIFO queue to record ac-
cess history for each postgreSQL back-end process to amortize
the lock acquisition cost. There are two key parameters in the
batching technique. One is the size of the FIFO queue, the
other is batch threshold, or the minimal number of entries in
the queue to trigger a committing. In this section, we perform
sensitivity study on the two parameters in the Altix 350 system
with 16 processors.
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We first gradually increase the queue size from 2 to 64 while
keeping the batch threshold as half of the queue size, and run
pgBatching with the three workloads. Their throughputs and
average lock contentions are as shown in Table II. We then
keep queue size fixed at 64, and gradually increase the batch
threshold from 1 to 64 in the evaluation of pgBatching under
the three workloads. The throughputs and the average lock
contentions are shown in Table III.

TABLE II
THROUGHPUTS AND AVERAGE LOCK CONTENTIONS OF

pgBatching WITH WORKLOADS DBT-1, DBT-2, AND TABLESCAN

WHEN THE QUEUE SIZE INCREASES FROM 2 TO 64 AND THE

BATCH THRESHOLD IS 1/2 OF THE QUEUE SIZE.

Queue Throughput Average Lock Contention
Size DBT-1 DBT-2 TableScan DBT-1 DBT-2 TableScan

2 46.3 353.4 9.4 34328 44932 79962
4 70.1 609.6 17.4 2675 12539 15001
8 72.0 622.1 19.9 72 1392 616
16 72.7 625.3 20.6 21 616 287
32 72.9 628.6 21.1 11 441 151
64 72.9 629.2 21.2 6 351 126

TABLE III
THROUGPUTS AND AVERAGE LOCK CONTENTION OF pgBatching
UNDER WORKLOADS DBT-1, DBT-2, AND TABLESCAN WHEN

THE BATCH THRESHOLD INCREASES FROM 1 TO 64
Thre- Throughput Average Lock Contention
shold DBT-1 DBT-2 TableScan DBT-1 DBT-2 TableScan

1 72.0 616.3 19.8 62 1916 561
2 72.4 622.5 20.3 29 970 370
4 72.6 627.7 20.5 22 526 313
8 72.7 627.9 20.9 16 513 216
16 72.8 628.0 21.1 10 472 165
32 72.9 629.2 21.2 6 351 126
48 72.2 624.2 20.3 31 677 361
64 70.2 611.9 19.4 1230 3569 956

Increasing queue size understandably reduces average lock
contention and thus improves throughput because access his-
tory can be committed in larger batches. When we increase
the queue size from 2 to 8, the average lock contention is
decreased by a factor of 477 for DBT-1, 32 for DBT-2, and
130 for TableScan. Accordingly throughput is significantly
increased. When the queue size increases beyond 8, increasing
queue size can still reduce the average lock contention, but
the improvement can hardly be translated into throughput
improvement due to already highly reduced lock contention.
We also notice that pgBatching outperforms pgPref even with
a very small queue size (2).

Intuitively, choosing a low batch threshold would give a
postgreSQL back-end process more chance to get the lock
without being blocked by trying the lock via TryLock() more
times before its FIFO queue becomes full, and thus would
decrease the probability of contention. However, the data in
Table III shows this trend only when the batch threshold is
larger than 32. When we increase the batch threshold from
1 to 32, we find that its average contention decreases and
throughput increases. This is because a low batch threshold can
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Fig. 8. Hit ratios and normalized throughputs of three postgreSQL
systems (pgClock, pg2Q, and pgBat-Pre) with workloads DBT-1 and
DBT-2 on the PowerEdge 1900 when the number of processors is 8.
Throughputs are normalized against those of the pgClock system.

lead to a premature committing, or committing of its access
history in small batches. This can decrease the probability that
a thread gets the lock via TryLock().

When the batch threshold exceeds 32, each back-end pro-
cess commits its access history in batches larger than 32
page accesses, which allows effective amortization of the lock
acquisition cost. The advantage of TryLock(), i.e., acquiring a
lock without being blocked, shows up. With relatively smaller
threshold, TryLock() can be called more times before the FIFO
queue becomes full and the chance of the process getting
a lock without blocking itself is higher. Therefore, we see
that the average contention increases and throughput decreases
when the batch threshold increases from 32 to 64.

When the batch threshold is set equal to the queue size (64),
the chance of using TryLock() is eliminated. Consequently, we
see a significant increase in the average lock contention and
decrease of throughput, even though a large batch is formed
for amortization of the lock acquisition cost. This indicates
that a batch threshold sufficiently smaller than the queue size
is necessary to take advantage of TryLock().

F. Overall Performance

In this section, we evaluate the overall performance of three
systems pgClock, pg2Q, and pgBat-Pre on the PowerEdge
1900 when the number of processors is eight. We have
evaluated the scalability of the various systems by setting
the buffer size equal to the data sizes of the workloads. The
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experiments have shown that lock contention can be reduced
significantly by combining the batching and prefetching tech-
niques. However, buffer sizes are usually much smaller than
data sizes in real systems. Thus, the ability of the systems
to reduce costly I/O operations by improving hit ratios is
also critical to the overall performance. In this experiment,
we change the buffer size from 32MB to 1024MB, and let
the systems issue direct I/O requests to bypass the operating
system buffer cache. As the data set sizes of DBT-1 and DBT-
2 are 6.8GB and 5.6GB respectively, not all the accesses can
be satisfied from the buffer.

Figure 8 shows the changes of hit-ratio and throughput in
the three systems. When memory size is small (less than
256MB), the systems are I/O bound. Systems pg2Q and
pgBat-Pre produce higher throughputs than system pgClock
by maintaining higher hit ratios. However, as the memory
size becomes larger, the overall performance of a system is
increasingly determined by its scalability and the advantage
of system pg2Q in terms of hit ratio has less impact. When
the buffer size reaches 1GB, its overall performance drops
below that of system pgClock. Meanwhile, system pgBat-Pref
retains its performance advantage with its improved scalability.
We also notice that the hit ratio curves of pg2Q and pgBat-
Pref overlap very well. This indicates that our techniques do
not hurt hit ratios.

V. RELATED WORK

Research efforts addressing performance degradation due
to lock contention have been made actively in the system
and database community. In general, lock contention can be
reduced by applying the following different approaches.

A. Reducing Lock Granularity Using Distributed Locks

Reducing lock granularity is a commonly used method for
decreasing lock contention. Replacing a globally shared lock
with multiple fine-grained locks can remove the single point
of contention. Oracle Universal Server [7], ADABAS [8],
and Mr.LRU replacement algorithm [19] use multiple lists to
manage their buffers. Each list is protected by a separate lock.
When a new page enters the buffer, Oracle Universal Server
inserts the page into the first unlocked list, and ADABAS
chooses a list in a round-robin manner. They both allow a
page to be evicted from one list and inserted into another list
later. Thus many replacement algorithms, such as 2Q [2] and
LIRS [1], would not work. To solve the problem, Mr.LRU
chooses a list by hashing, which guarantees that a page enters
the same list every time it is loaded from the disk.

The distributed lock approaches, including the one used
in Mr.LRU, have the following serious drawbacks. (1) They
cannot be used to implement replacement algorithms that need
to detect access sequences, such as SEQ [12], because pages
in the same sequence may be distributed into multiple lists.
(2) Though pages can be evenly distributed into multiple lists,
accesses to buffer pages may not. Lists with hot pages, such
as top-level index pages or pages in a small table for a parallel
join, may still suffer from lock contention. (3) To reduce

contention, the buffer has to be partitioned into hundreds, even
thousands, of lists. Thus each list has a much smaller size than
the size of buffer. With the small lists, those pages that need
a special protection from eviction, such as dirty pages and
index pages, may be evicted prematurely from the buffer. In
contrast, our framework is able to implement all replacement
algorithms without partitioning the buffer.

B. Reducing Lock Holding Time

As we know, the larger the lock holding time, the more
serious the contention would be. Reducing lock holding time
is another effective approach to minimizing lock contention.

The TSTE (two stage transaction execution) strategy used in
Charm [20] separates disk I/O and lock acquisition into two
mutually exclusive stages and ensures that all the data pages
that a transaction needs are already in local memory before
they are locked. By this method, TSTE reduces lock contention
delay in the disk-resident transaction processing system to the
same level as that experienced by memory-resident transaction
systems.

In Linux kernel 2.4, the scheduler traverses the task struc-
tures in a global queue protected by a spin-lock to select a
task to run. Paper [21] shows that the contention on the spin-
lock can be very serious when the traversal time is lengthened
by unnecessary conflict misses in the hardware cache during
the traverse. By carefully laying out task structures in mem-
ory, most reducing conflict misses can be avoided and lock
contention can be greatly reduced because the traversal takes
much less time. In contrast, our framework uses prefetch to
reduce lock holding time by reducing hardware cache misses
when executing the replacement algorithm and by executing a
replacement algorithm in a batch mode for multiple accesses.

C. Wait-Free Synchronization and Transactional Memory

As lock synchronization can cause issues like performance
degradation and priority inversion, wait-free synchroniza-
tion [22] addresses these issues by guaranteeing that a transac-
tion completes the operation of accessing the shared resource
in a limited number of steps regardless of the execution
progress of other transactions. However, programs adopting
this technique are difficult to design, and it is possible that
an algorithm does not have its wait-free implementation.
Moreover, wait-free synchronization requires atomic primi-
tives supported by hardware. For example, the wait-free imple-
mentation of a double-ended queue requires Double Compare-
And-Swap (DCAS) primitive, which is not available on most
processors.

Transactional memory is another approach to address the is-
sue of lock contention. In a transactional memory, a transaction
is considered as a series of operations on the shared resources.
The atomicity of its execution is guaranteed by either hard-
ware [23] or software [24] that implements transactional mem-
ory. It improves system scalability through enabling optimistic
concurrency control [25], [26]. While hardware transactional
memory has not been available, there are various software
transactional memory (STM) implementations. Performance
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comparisons between STM and lock synchronization show that
STM outperforms locks when the shared resources are infre-
quently changed in the transaction processing [27]. Because
data structures in replacement algorithms can be changed
frequently (upon each page access), transactional memory can
hardly improve the scalability of replacement algorithms. In
contrast, both of the batching and the prefetching techniques
in BP-Wrapper can be easily implemented in software and do
not require special hardware support.

VI. CONCLUSION AND FUTURE WORK

In this paper, we address the scalability issue due to lock
contention in the implementation of advanced replacement
algorithms into DBMS systems. We proposed an efficient
and scalable framework, BP-wrapper, in which the batching
and prefetching techniques can be used with any replacement
algorithms without modification of the algorithms. Without
algorithm modification, the performance advantage of the
original replacement algorithms will not be compromised, and
human effort is also saved. The only cost of the framework
is a small FIFO queue for each transaction-processing thread,
which keeps the thread’s most recent access information.

We have implemented the framework in postgreSQL 8.2.3
and tested it with a TPC-W-like workload, a TPC-C-like
workload, and a synthetic workload. Our performance evalu-
ation shows that BP-Wrapper can increase system throughput
by nearly two-fold compared to the implementation of an
unmodified replacement algorithm, such as LRU and 2Q, and
achieve a scalability as good as the one that does not use
lock on hit accesses, such as the clock algorithm. We plan to
evaluate BP-Wrapper on larger systems, especially the ones
with more multi-core processors, in production environments
with real-world workloads.
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