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This article proposes to use a frequency-based cache admission policy in order to boost the effectiveness of

caches subject to skewed access distributions. Given a newly accessed item and an eviction candidate from

the cache, our scheme decides, based on the recent access history, whether it is worth admitting the new item

into the cache at the expense of the eviction candidate.

This concept is enabled through a novel approximate LFU structure called TinyLFU, which maintains an

approximate representation of the access frequency of a large sample of recently accessed items. TinyLFU is

very compact and lightweight as it builds upon Bloom filter theory.

We study the properties of TinyLFU through simulations of both synthetic workloads and multiple real

traces from several sources. These simulations demonstrate the performance boost obtained by enhancing

various replacement policies with the TinyLFU admission policy. Also, a new combined replacement and

eviction policy scheme nicknamed W-TinyLFU is presented. W-TinyLFU is demonstrated to obtain equal or

better hit ratios than other state-of-the-art replacement policies on these traces. It is the only scheme to obtain

such good results on all traces.
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1 INTRODUCTION

Caching is one of the most basic and effective methods in computer science for boosting a sys-
tem’s performance in a multitude of domains. It is obtained by keeping a small percentage of the
data items in a memory that is faster and/or closer to the application in settings where the entire
data domain does not fit into this fast nearby memory. The intuitive reason caching works is that
data accesses in many domains of computer science exhibit a considerable degree of “locality.”
A more formal way to capture this “locality” is to characterize the access frequency of all pos-
sible data items through a probability distribution and note that in many interesting domains of
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computer science, the probability distribution is highly skewed, meaning that a small number of
objects are much more likely to be accessed than other objects. Further, in many workloads, the
access pattern and consequently the corresponding probability distribution change over time. This
phenomenon is also known as “time locality.”

When a data item is accessed, if it already appears in the cache, we say that there is a cache hit;
otherwise, it is a cache miss. The ratio between the number of cache hits and the total number of
data accesses is known as the cache hit ratio. Hence, if the items kept in the cache correspond to
the most frequently accessed items, then the cache is likely to yield a higher hit ratio (Hennessy
and Patterson 2012).

Given that cache sizes are often limited, cache designers face the dilemma of how to choose
the items that are stored in the cache. In particular, when the memory reserved for the cache
becomes full, one needs to decide which items should be evicted from the cache. Intuitively, evic-
tion decisions should be done in an efficient manner, in order to avoid a situation in which the
computation and space overheads required to answer these questions surpass the benefit of us-
ing the cache. The space used by the caching mechanism in order to decide which items should
be inserted into the cache and which items should be evicted is called the metadata of the cache.
In many caching schemes, the time complexity of manipulating the metadata and the size of the
metadata are proportional to the number of items stored in the cache.

When the probability distribution of the data access pattern is constant over time, it is easy to
show that the Least Frequently Used (LFU) yields the highest cache hit ratio (Breslau et al. 1999;
Serpanos and Wolf 2000). According to LFU, in a cache of size n items, at each moment the n most
frequently used items thus far are kept in the cache. Yet, LFU has two significant limitations. First,
known implementations of LFU require maintaining large and complex metadata. Second, in most
practical workloads, the access frequency changes radically over time. For example, consider a
video caching service; a video clip that is extremely popular on a given day might not be accessed
at all a few days later. Hence, there is no point in keeping that item in cache once its popularity
has faded just because it was once very popular.

Consequently, various alternatives to LFU have been developed. Many of these include aging
mechanisms and/or focus on a limited size window of the last W accesses. Such aging is both in
order to limit the size of the metadata and in order to adapt the caching and eviction decisions to
the more recent popularity of items. A prominent example of such a scheme is called Window LFU
(WLFU) (Karakostas and Serpanos 2002), as elaborated later. Further, in the vast majority of cases,
a newly accessed item is always inserted into the cache and the caching scheme focuses solely
on its eviction policy, that is, deciding which item should be evicted. This is because maintaining
metadata for objects not currently in the cache is deemed impractical.

Let us note that due to the prohibitively high cost of maintaining a frequency histogram for
all objects ever encountered, published works that implement the LFU scheme only maintain the
frequency histogram w.r.t. items that are in the cache (Podlipnig and Böszörmenyi 2003). Hence,
we distinguish between them by referring to the latter as In-Memory LFU and to the previously
discussed variant as Perfect LFU (PLFU). Since WLFU outperforms In-Memory LFU (Breslau et al.
1999) (at the cost of larger metadata), here we only address WLFU and PLFU.

A popular alternative to LFU that relies on the “time locality” property is known as Least Recently
Used (LRU) (Hennessy and Patterson 2012), by which the last item accessed is always inserted
into the cache and the least recently accessed item is evicted when the cache is full. LRU can be
implemented much more efficiently than LFU1 and automatically adapts to temporal changes in

1Yet, LRU is still considered too slow for hardware caches and operating system page caching, and therefore in these highly

demanding situations, we find approximations of LRU rather than exact LRU implementations.
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the data access patterns and to bursts on the workloads. Yet, under many workloads, LRU requires
much larger caches than LFU in order to obtain the same hit ratio.

Contributions. The main contribution of this article is in showing the feasibility and effective-
ness of augmenting caches with an approximate LFU-based admission policy. This consists of the
following aspects: First, we present a caching architecture in which an accessed item is only in-
serted into the cache if an admission policy decides that the cache hit ratio is likely to benefit
from replacing it with the cache victim (as chosen by the cache’s replacement policy). Second, we
develop a novel highly space-efficient data structure, nicknamed TinyLFU, that can represent an
adaptable approximate LFU statistics for very large access sample.2 For example, the metadata re-
quired to implement TinyLFU, even for a domain of millions of items, can fit in a single memory
page and thus can remain pinned in physical memory, allowing for fast manipulation. We show
through both a formal analysis and simulations that despite being approximated, the frequency
ordering obtained by TinyLFU mimics closely the corresponding ordering that would appear in a
true access frequency histogram for these items.

Third, we report on the integration of TinyLFU into the Caffeine high-performance Java cache
open-source project (Manes 2016). In particular, this part includes another optimization of TinyLFU
called W-TinyLFU to better handle bursty workloads. The W-TinyLFU scheme places a relatively
small window cache in front of the main cache. New items are always inserted into the window
cache, and TinyLFU serves as an admission filter for inserting removed items from the window
cache into the main cache. In addition to improving hit ratios in such workloads, it may also better
fit systems in which new items must always be loaded into the cache.

Fourth, we perform an extensive performance study of TinyLFU-enhanced eviction policies and
compare them to multiple other cache management policies including state-of-the-art ones like
LIRS (Jiang and Zhang 2002) and ARC (Megiddo and Modha 2003, 2006). We exhibit that for skewed
workloads, with both synthetic and real-world traces, the TinyLFU admission policy dramatically
boosts the performance of several known eviction policies. In the case of static distributions, after
applying the TinyLFU admission policy, the difference between the various eviction policies be-
comes marginal. That is, even the most naive eviction policy yields almost the same performance
as true LFU. On the other hand, in the case of real (dynamic) distributions, a smart eviction policy
still has an impact, but much less profound than without the admission policy. Further, on the
various traces we have tested, W-TinyLFU’s hit ratio tops or equals all other cache management
policies we have experimented with, and it is the only policy that performed well consistently. In-
terestingly, for most traces, even the basic (non-W-TinyLFU) configuration in which the eviction
policy was LRU enhanced with a TinyLFU admission policy obtained the same (best) results as
W-TinyLFU.

The rest of this article is organized as follows: Related work is discussed in Section 2. We present
TinyLFU in Section 3. Section 4 describes the adaptation of TinyLFU into Caffeine (Manes 2016)
and our novel W-TinyLFU scheme. The performance measurements are reported in Section 5, and
we conclude with a discussion in Section 6.

2 RELATED WORK

2.1 Cache Replacement

As indicated in the introduction, while PLFU is an optimal policy when the access distribution is
static, the cost of maintaining a complete frequency histogram for all data items ever accessed is

2We use the term “sample” here rather than a “window” to highlight the role it plays in TinyLFU as well as to distinguish

it from other references to “windows” in this work.
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prohibitively high, and PLFU does not adapt to dynamic changes in the distribution (Karakostas
and Serpanos 2002; Arlitt et al. 2000, 1999). Consequently, several alternatives have been suggested.

In-Memory LFU only maintains the access frequency of data items already in the cache, and al-
ways inserts the most recently accessed item into the cache. When needed, In-Memory LFU evicts
the least frequently accessed item among those that are in the cache (Podlipnig and Böszörmenyi
2003). In-Memory LFU is usually maintained using a heap. The time complexity of managing LFU
was thought to beO (log(N )) until recently, when anO (1) construction was shown in Ketan Shah
and Matani (2010). Yet, even with this improvement, In-Memory LFU still suffers from slow reac-
tion to changes in the frequency distribution. Also, its performance lags considerably compared
to PLFU in static distributions, since it does not maintain any frequency statistic for items that are
no longer in the cache (Podlipnig and Böszörmenyi 2003).

Aging was introduced in Arlitt et al. (2000) to improve the ability of In-Memory LFU to react
to changes. It is obtained by limiting the maximum frequency count of cached items as well as
occasionally dividing the frequency count of cached items by a given factor. Determining when to
divide the counters and by how much is tricky and requires fine-tuning (Arlitt et al. 1999).

As mentioned earlier, WLFU only maintains the access frequency for a window of the last W
requests (Karakostas and Serpanos 2002). In order to maintain this window, the mechanism needs
to keep track of the order of the requests, which adds an overhead. Yet, WLFU adapts much better to
dynamic changes in the access distribution than PLFU does, because its frequencies are maintained
only w.r.t. the lastW accesses.

ARC (Megiddo and Modha 2003, 2006) combines recency and frequency by maintaining meta-
data in two LRU lists. The first reflects items that were only accessed once, while the second cor-
responds to items that were accessed at least twice in the recent history. ARC adjusts itself to the
characteristics of the workload by balancing its cache content source from both lists according to
their hit ratio. In order to do so, ARC monitors access data for items that were recently evicted
from the cache. If items evicted from the LRU list are hit again, then ARC extends this list and
behaves more like LRU. If an item that was recently evicted from the second LFU list is hit, then
ARC extends the size of the LFU list and behaves more similar to LFU. The technique of moni-
toring items that were recently evicted from the cache is called ghost entries and has become very
common in state-of-the-art cache policies.

LIRS (Jiang and Zhang 2002) (Low Interreference Recency Set) is a page replacement algorithm
that attempts to directly predict the next occurrence of an item using a metric named reuse distance.
To do so, LIRS monitors previous arrival times of many past items both in cache and in ones that
were evicted from the cache. Thus, LIRS also maintains a large number of ghost entries.

The Segmented LRU (SLRU) (Karedla et al. 1994) policy captures recent popularity by distin-
guishing between temporally popular items that are accessed at least twice in a short window ver-
sus items accessed only once during that period. This distinction is done by managing the cache
through two fixed-size LRU segments, a probation segment (A1) and a protected segment (A2). New
items are always inserted into the probation segment. When an item already in the probation seg-
ment is being accessed again, it is moved into the protected segment. If the probation segment
becomes full, an insertion to it results in evicting (and forgetting) one of its items according to the
LRU policy. Similarly, any insertion to a full protected segment results in evicting its LRU victim.
However, in this case, the victim is inserted back into the probation segment rather than being
completely forgotten. This way, temporally popular items that reach the protected segment will
stay longer in the cache than less popular items.

2Q (Johnson and Shasha 1994) is a page replacement policy for operating systems, which man-
ages two FIFO queues, A1 and A2. A1 is split into two subqueues, A1in (resident) and A1out (non-
resident). When an item is first accessed, it is entered into A1in and stays there until it is evicted
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under the FIFO policy. However, when an item is being evicted from either A1in or A2, it is in-
serted into A1out. If an accessed item is neither in A1in nor in A2, but it appears in A1out, then it
is inserted into A2.

LRU-K (O’Neil et al. 1993) also combines ideas from LRU and LFU. In this policy, the last K
occurrences of each element are remembered. Using this data, LRU-K statistically estimates the
momentary frequency of items in order to keep the most frequent pages in memory.

Web caching schemes often take into account also the size of objects. For example,
SIZE (Williams et al. 1996) offers to simply remove the largest item first, while same-size items are
ordered by LRU. LRU-SP (Cheng and Kambayashi 2000) weighs both the size and the frequency of
an item when picking a cache victim.

Greedy-Dual-Frequency-Size (GDFS) (Cherkasova 1998) is a hybrid web caching policy that com-
bines in its decisions the recency of last accesses, the cost of bringing the object to the cache, the
object size, and its frequency. It is an improvement of the Greedy Dual algorithm (Young 1991)
that only factors size and cost. In Atzmon et al. (2002), latency is also taken into account in work-
loads when the data is hierarchical; that is, in order to fetch a child item, one must first fetch its
predecessor item.

A related approach to ours is introduced in Tewari and Hazelwood (2004), which suggests aug-
menting known caching algorithms using a Hot List. This list indicates what the most popular
items are using some decay mechanism. Items in the hot list are given priority over other items in
the eviction policy. However, the decision of whether to evict an item in the cache does not depend
on the relative frequency of this item versus the frequency of the currently accessed item. Further,
an explicit list of n items must be maintained. This method was shown in Tewari and Hazelwood
(2004) to somewhat improve the hit ratio of various caching suggestions at the cost of significant
metadata overhead.

Briefly, TinyLFU relates to the previous suggestions by being a mechanism that can be used to
augment other caching policies by enhancing them with approximate statistics on a large history
while providing both quick access time and low metadata overhead.

2.2 Cache Placement in SANs

The work of Ari, Gottwals, and Henze (Ari et al. 2006) studied SAN-based storage systems in which
the disks are enhanced with a limited capacity SSD-based cache. They have suggested automat-
ically migrating large chunks of randomly accessed hot data from the disks to the SSD cache,
where the migration decision is based on identifying regions whose access density is above a given
threshold. In particular, the work in Ari et al. (2006) proposed the Most Recently Frequently Used
(MRFU) criteria to identify such regions, that is, maintaining access frequency counters for ran-
domly accessed regions while periodically aging (or cooling in their terminology) the counters by
decrementing them by some constant. The aging/cooling period and the aging/cooling constant
were left for future exploration. The replacement policy to make room for newly migrated re-
gions was also not explored. Their results exhibit similar or higher cache hit ratios compared to
alternatives with much lower migration bandwidth.

2.3 Approximate Counting Architectures

Approximate counting techniques are widely employed in many networking applications. Ap-
proximate counting was originally developed in order to maintain per-stream network statistics.
These constructions can be appealing to caching as well since they offer very fast updates and
consume a compact size.

Sampling methods (Choi et al. 2002; Hu et al. 2008; Estan et al. 2004) offer a small memory
footprint but require explicit representation of keys. Also, they usually encounter relatively large
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error bounds. We therefore chose not to use them, as the size of the keys in our context is a
significant part of the overall costs.

Other methods such as Counter Braids (Lu et al. 2008) reduce the metadata size but require a long
decode operation and are therefore not applicable to caching. Another approach is to compress the
counterrepresentation itself (Stanojevic 2007; Hu et al. 2010; Tsidon et al. 2012; Einziger et al. 2015).
In TinyLFU, we manage to represent the histogram using short counters, and thus these methods
do not help us.

Multihash sketches such as Spectral Bloom Filters (SBF) (Cohen and Matias 2003) and the Count
Min Sketch (CM-Sketch) (Cormode and Muthukrishnan 2004) are appealing in our context. As these
sketches implicitly associate keys and counters, there is no need to store keys in the frequency his-
togram. Yet, they are not optimal for our case. In particular, SBF includes a complex implementation
aimed at achieving variable-sized counters. Such a complex implementation is not needed for our
usage since we only require small counters. The CM-Sketch, on the other hand, offers a simple
implementation, but is relatively inaccurate and therefore takes more space than counting Bloom
filters (Fan et al. 2000).

The Minimal Increment scheme, also known as conservative update, has been proposed as a way
to boost the accuracy of counting Bloom filters when all the increments are positive (Cohen and
Matias 2003; Estan and Varghese 2002; Einziger and Friedman 2015a). This technique was success-
fully used in several fields (Narayanasamy et al. 2003; Raspall and Sallent 2008; Bianchi et al. 2010;
Goyal et al. 2010; Bianchi et al. 2011, 2010; Kolaczkowski 2007; Goyal and Daumeaé 2011; Goyal
et al. 2012).

2.4 Interesting Caching Applications

Data caching can be used as a cloud service (Chockler et al. 2010, 2011). Memcached (Fitzpatrick
2004) allows in-memory caching of database queries and the items associated with them and is
widely deployed by many real-life services including Facebook and Wikipedia.

Caching is also employed at the network level of data centers inside network devices. This is re-
alized by using a technique called in-network caching (Psaras et al. 2012; Chai et al. 2012). The tech-
nique enables content to be named explicitly so network devices can serve it from their caches. In
peer-to-peer systems, TinyLFU was also used to expedite the lookup process in Kademlia (Einziger
et al. 2016), effectively increasing capacity and reducing delays.

TinyLFU can be integrated in all the aforementioned examples. For in-network caching,
TinyLFU is appealing since it requires very small memory overhead and can efficiently be im-
plemented in hardware. As for MemcacheD and cloud cache services, the eviction policy of
Fitzpatrick (2004) and Chockler et al. (2011) is a variant of LRU with no admission policy. As we
show in this article, adding a TinyLFU-based admission policy to an LRU eviction policy greatly
boosts its performance.

3 TINYLFU ARCHITECTURE

3.1 TinyLFU Overview

TinyLFU’s architecture is illustrated in Figure 1. Here the cache eviction policy picks a cache
victim, while TinyLFU decides if replacing the cache victim with the new item is expected to
increase the hit ratio.

To do so, TinyLFU maintains statistics of item frequencies over a sizable recent history. Storing
these statistics is considered prohibitively expensive for a practical implementation and there-
fore TinyLFU approximates them in a highly efficient manner. In the following, we describe the
techniques we employ for TinyLFU, some of which are adaptations of known sketching techniques
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Fig. 1. A general cache augmented with TinyLFU.

Fig. 2. A counting Bloom filter example.

for approximate counting, whereas others are novel ideas created especially for the context of
caching.

Let us emphasize that we face two main challenges. The first is to maintain a freshness mech-
anism in order to keep the history recent and remove old events. The second is the memory con-
sumption overhead that should significantly be improved upon in order to be considered a practical
cache management technique.

3.2 Approximate Counting Overview

A counting Bloom filter is a Bloom filter in which each entry in the vector is a counter rather than a
single bit. Hence, rather than setting bits at the indexes corresponding to the filter’s hash functions,
these entries are incremented on an insert/add operation.

A Minimal Increment CBF (Cohen and Matias 2003; Estan and Varghese 2002) is an augmented
counting Bloom filter that supports two methods: Add and Estimate. The Estimate method is
performed by calculating k different hash values for the key. Each hash value is treated as an index,
and the counter at that index is read. The minimal value of these counters is the returned value.
The Add method also calculates k different hash values for the key. However, it reads all k counters
and only increments the minimal counters (all of them if there are several minimal counters). If a
counter reaches the maximal value it can represent (given its size in bits), additional increments
do not increase it any further in order to avoid overflows. For example, suppose we use three hash
functions as illustrated in Figure 2. Upon item arrival, three counters are read. Assuming we read
{2, 2, 5}, the Add operation increments only the two left counters from two to three, while the third
counter remains untouched. Intuitively, this Add operation prevents unnecessary increments to
large counters and yields a better estimation for high-frequency items, as their counters are less
likely to be incremented by the majority of low-frequency items. It does not support decrements
but is shown to empirically reduce the error for high-frequency counts (Cohen and Matias 2003).

Other Approximate Counting Schemes. As mentioned earlier, CM-Sketch is another popular
approximate counting scheme (Cormode and Muthukrishnan 2004). It provides a somewhat
lower-accuracy-per-space tradeoff. However, it is largely believed to be faster (Cormode and
Muthukrishnan 2004). The space optimizations and aging mechanism we describe next can be
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applied to CM-Sketch in the same manner. The description of TinyLFU that follows is oblivious to
the choice between counting Bloom filter and CM-Sketch.

3.3 Freshness Mechanism

To the best of our knowledge, keeping approximation sketches fresh has only been studied in
Dimitropoulos et al. (2008), where a sliding sample is obtained by maintaining an ordered list of
m different sketches. New items are inserted to the first sketch, and after a constant amount of
insertions, the last sketch is cleared and is moved to the head of the list. In this way, old events are
forgotten.

The method of Dimitropoulos et al. (2008) is not very appealing as a frequency histogram for
two reasons: First, in order to evaluate the frequency of an item,m distinct approximation sketches
are read, resulting in many memory accesses and hash calculations. Second, this method increases
the space consumption, since we need to store the same items in m different sketches and each
item is allocated more counters.

Instead, we propose a novel method for keeping the sketch fresh, the reset method described
later. Every time we add an item to the approximation sketch, we increment a global counter S .
Once the value of this counter S reaches the sample size (W ), we divide S and all other coun-
ters in the approximation sketch by two. Notice that immediately after the reset, S =W /2. This
division has two interesting merits. First, it does not require much extra space as its only added
memory cost is a single counter of Loд(W ) bits. Second, this method increases the accuracy of
high-frequency items as we show both analytically and experimentally. Typically, the accuracy of
an approximation sketch can be increased by using more space. We show that the reset method
allows increasing sketch accuracy without additional total space cost.

The downside of this operation is an infrequent operation that goes over all the counters in
the approximation scheme and divides them by two. Yet, division by two can be implemented effi-
ciently in hardware using shift registers. Similarly, shift and mask operations allow for performing
this operation for multiple (small) counters at once. Finally, its amortized complexity is constant,
making it feasible for many applications.

In the following subsections, we prove the correctness of the reset operation and evaluate its
truncation error. The truncation error is caused since we use an integer division and therefore a
counter that shows three will be reset to one and not to 1.5.

3.3.1 Reset Correctness. In this section, we analyze TinyLFU operations under the assumption
that the counting infrastructure works accurately. In the result section, we explore how much
space is required to keep the performance identical to that of an accurate counting technique.

Definition 3.1. Denote byW the sample size, fi the frequency of item i , and hi the estimation of
i in TinyLFU.

Lemma 3.2. Under constant distribution, at the end of each sample (immediately before each reset
operation), the expected frequency of i in the histogram is E (hi ) = fi ·W .

Proof. By induction on the number of reset operations performed r .
Base: For r = 0, the condition holds trivially. We sampleW items one after another under con-

stant distribution. By definition, item i has a frequency of fi . Therefore, the expected height of the
histogram is E (hi ) = fi ·W .

Step: Assume correctness for r < j and prove it for r = j. From the induction hypothesis, until
the j − 1 reset operation occurs, E (hi ) = fi ·W . Therefore, immediately after the j − 1 reset op-

eration, E (hi ) =
fi ·W

2 (at which point S = W
2 ). There are exactly W

2 samples until the next reset

operation (until S =W again) and therefore E (hi ) is expected to be incremented
fi ·W

2 times.
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Since the expectation is additive, we conclude that right before the j ′th reset operation, E (hi ) =
fi ·W . �

The previous lemma proves that TinyLFU converges to the right frequency under constant distri-
bution. To show that TinyLFU adjusts to changes, we prove a slightly stronger lemma that says
that under constant distribution, eventually TinyLFU converges to the right frequency regardless
of its initial value.

Lemma 3.3. Under constant distribution, eventually E (hi ) = fi ·W .

Proof. Consider the initial value of hi right before a reset operation. We write this value as
fi ·W + σ , whereσ is the error. For example, ifhi = 10 but fi ·W = 8, thenσ = 2. After performing

a reset operation, hi will be hi =
fi ·W

2 + σ
2 . The next reset operation is scheduled to happen within

W
2 events and on averagehi before the next reset operation will increase by

fi ·W
2 . Its new value will

therefore be hi =
fi ·W

2 + σ
2 +

fi ·W
2 = fi ·W + σ

2 . We can repeat this process k times and get that

after k more samples, the value of hi is going to be hi =
fi ·W

2 + σ
2k
+

fi ·W
2 = fi ·W + σ

2k
Therefore,

if we take k to infinity, we get that

lim
k→∞

(
fi ·W +

σ

2k

)
= fi ·W .

In practice, since we use integer division, the initial error is eliminated after loд2 (σ ) samples. How-
ever, in that case, there is also a truncation error as detailed next. �

3.3.2 Reset Truncation Error. Since our reset operation uses integer division, it introduces trun-
cation error. That is, after a reset operation, the value of a counter can be as much as 0.5 lower than
that of a floating-point counter. If we have to reset again, after the reset, the truncation error of
the previous reset operation is divided to 0.25, but we accumulated a new truncation error of 0.5,
resulting in a total error of 0.75. It is easy to see that the worst-case truncation error converges to
at most one point lower than the accurate rate of the item. Therefore, the truncation error affects
the recorded occurrence rate of an item by as much as 2

W
right after a reset operation. This means

that the larger the sample size, the smaller the truncation error.

3.4 Space Reduction

Our space reduction is obtained over two separate axes: First, we reduce the size of each of the
counters in the approximation sketch. Second, we reduce the total number of counters allocated
by the sketch. These space-saving optimizations are detailed next.

3.4.1 Small Counters. Naively implementing an approximation sketch requires using long
counters. If a sketch holds W unique requests, it is required to allow counters to count until W
(since in principle an item could be accessedW times in such a sample), resulting in Loд(W ) bits
per counter, which can be prohibitively costly. Luckily, the combination of the reset operation and
the following observation significantly reduces the size of the counters.

Specifically, a frequency histogram only needs to know whether a potential cache replacement
victim that is already in the cache is more popular than the item currently being accessed. However,
the frequency histogram need not determine the exact ordering between all items in the cache.
Moreover, for a cache of sizeC , all items whose access frequency is above 1/C belong in the cache
(under the reasonable assumption that the total number of items being accessed is larger than C).
Hence, for a given sample sizeW , we can safely cap the counters byW /C .
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Fig. 3. TinyLFU structure.

Notice that this optimization is possible since our “aging” mechanism is based on the reset
operation rather than a sliding window. With a sliding window, in an access pattern in which
some item i alternates betweenW /C consecutive accesses followed byW /C + 1 accesses to other
items, it could happen that i would be evicted as soon as the sliding window shifts beyond
the least recent W /C accesses to i even though i is the most frequently accessed item in the
cache.

To get a feel for counter sizes, when W /C = 8, the counters require only 3 bits each, as the
sample is 8 times larger than the cache itself. For comparison, if we consider a small 2K-item cache
with a sample size of 16K items and we do not employ the small counters optimization, then the
required counter size is 14 bits.

3.4.2 Doorkeeper. In many workloads, and especially in heavy-tailed workloads, unpopular
items account for a considerable portion of all accesses. This phenomenon implies that if we
count how many times each unique item in the sample appeared, the majority of the counters
are assigned to items that are not likely to appear more than once inside the sample. Hence, to
further reduce the size of our counters, we have developed the Doorkeeper mechanism that en-
ables us to avoid allocating multiple-bit counters to most tail items, that is, to the infrequent items
whose counters are likely to remain at most one, which are the vast majority of items in skewed
distributions.

The Doorkeeper is a regular Bloom filter placed in front of the approximate counting scheme.
Upon item arrival, we first check if the item is contained in the Doorkeeper. If it is not contained
in the Doorkeeper (as is expected with first timers and tail items), the item is inserted to the Door-
keeper, and otherwise, it is inserted to the main structure. When querying items, we use both the
Doorkeeper and the main structures. That is, if the item is included in the Doorkeeper, TinyLFU
estimates the frequency of this item as its estimation in the main structure plus one. Otherwise,
TinyLFU returns just the estimation from the main structure.

When performing a reset operation, we clear the Doorkeeper in addition to halving all counters
in the main structure. Doing so enables us to remove all the information about first timers. Un-
fortunately, clearing the Doorkeeper also lowers the estimation of every item by one, which also
increases the truncation error by one.

Memorywise, although the Doorkeeper requires additional space, it allows the main structure
to be smaller since it limits the amount of unique items that are inserted to the main structure. In
particular, most tail items are only allocated 1-bit counters (in the Doorkeeper). Hence, in many
skewed workloads, this optimization significantly reduces the memory consumption of TinyLFU.
TinyLFU and the Doorkeeper are illustrated in Figure 3. We note that a similar technique was
previously suggested in the context of network security (Cao et al. 2009).
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Fig. 4. TinyLFU versus unoptimized approximate frequency histogram.

3.5 Test Case: TinyLFU Versus a Strawman

To motivate the design of TinyLFU, we compare it to a strawman. The strawman is equivalent
to building a frequency histogram using only existing approximate counting suggestions. In or-
der for the strawman to keep items fresh, it uses the sliding-window approximation proposed in
Dimitropoulos et al. (2008). That is, the strawman uses 10 different approximate counting sketches
in order to mimic a sliding window. Moreover, the strawman does not have a Doorkeeper or a cap
on its counters and is therefore required to allow its counters to grow even to the maximal window
size.

Our test case is a 1K-item cache augmented by a 9K-item frequency histogram. For this work-
load, TinyLFU requires its counters to count up to nine. This counting is obtained using 3-bit full
counters that can count up to eight, in addition to the Doorkeeper that can count up to one. The
strawman uses 10 approximate counting sketches of 900 items each, and its counters are of size 10
bits. In this example, we consider a Zipf 0.9 distribution, which is characteristic of many interesting
real-world workloads (e.g., Breslau et al. (1999), Serpanos and Wolf (2000), and Gill et al. (2007)).

We summarize the storage requirements of both frequency histograms in Figure 4. As can be
observed, in this workload, TinyLFU is required to store approximately 10% fewer unique values
because it uses a single big sketch instead of 10 small sketches. Moreover, for this experiment the
vast majority of items consumed only a small counter of 1 bit. The frequent items that appeared
more than once in this sample were allocated additional 3-bit counters due to the small counters
optimization. In total, for this workload, we notice that TinyLFU reduces the memory consumption
of the strawman by ≈89%.

3.6 Connecting TinyLFU to Caches

Connecting TinyLFU to both LRU and Random caches while treating the cache as a black box is
trivial. However, since TinyLFU uses a reset that halves the frequencies of items, we were forced
to modify the implementation of the LFU cache in order to properly connect it with TinyLFU. In
particular, we had to synchronize the reset operation of TinyLFU with the cache and reset the
frequencies of cached items as well.

4 THE W-TINYLFU OPTIMIZATION

4.1 On TinyLFU’s Limitations

Despite its benefits, the approach of only adding a TinyLFU admission policy has certain limita-
tions, which motivate the W-TinyLFU architecture presented in Section 4.2. These include:

(1) TinyLFU was integrated into the open-source Caffeine Java high-performance caching
library (Manes 2016). During extensive benchmarking performed with this library, we
have discovered that while TinyLFU performs well on traces originating from Internet
services and artificial Zipf-like traces, there are a few workloads in which TinyLFU did
not perform as well when compared to state-of-the-art caching policies. We explain this
issue shortly.

(2) From a theoretical standpoint, as we show in the appendix, TinyLFU has a worse compet-
itive ratio than LRU.
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Fig. 5. Window TinyLFU scheme: Items are first always admitted to the window cache and the victim of the

window cache is offered to the main cache, which employs TinyLFU as its admission filter. In the particular

case of the Caffeine implementation, the window cache is allocated 1% of the total apace and it is managed

by the LRU policy, while the main cache follows the SLRU eviction policy and is allocated 99% of the total

cache space.

(3) In some systems, missed items always have to be brought into the cache in order to be
read. In such systems, the cache needs at least one slot for the most recently accessed item.

To understand limitation 1, let us introduce the concept of recency bias in a workload. Consider
an access pattern in a workload in which occasionally there is a sequence of accesses such that
the vast majority of accesses inside this sequence are to a very small number of objects (in the
extreme, all accesses are to a single object). We refer to such a sequence as a burst of requests.
Note that during a burst, the most recently accessed objects are the most likely to be accessed next
regardless of their overall frequency. Hence, when a workload includes many bursts of requests,
we say that it has a strong recency bias.

Any kind of cache management policy that is based on frequency, including the TinyLFU ad-
mission policy, is likely to yield suboptimal hit ratios on workloads with a strong recency bias.
Intuitively, when a burst begins, it may take a frequency-based scheme several accesses until the
frequency of the corresponding objects becomes high enough to admit them into the cache. Then,
once the burst ends, it would take some time for the aging process of the frequency estimation for
the corresponding objects to drop enough to evacuate them. During this time, they occupy space
in the cache that cannot be allocated to more relevant objects. In other words, both at the begin-
ning of a burst and after it ends, a frequency-based scheme will underperform compared to an LRU
cache. The smaller the cache is and the stronger the recency bias is, the worse the frequency-based
scheme will do. Yet, if a burst is very long, then the detrimental impact of its beginning is amortized
by its many accesses, meaning that many short bursts are the worst for frequency-based schemes.
The workloads where TinyLFU underperformed were these types of traces, which originated from
a few storage systems, as reported in Section 5.

4.2 The W-TinyLFU Architecture

The aforementioned issues were remedied by devising an architecture called Window TinyLFU (W-
TinyLFU), which consists of two cache areas as illustrated in Figure 5: a main cache that employs
a TinyLFU admission policy and a window cache that has no admission filter. Every time there is a
cache miss, the accessed item is inserted into the window cache. The victim of the window cache
is then passed to TinyLFU to decide whether it should be inserted into the main cache depending
on whether its frequency estimation is higher or lower than the main cache’s victim.
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In principle, this architecture is generic and one is free to choose any eviction policy for the
window cache and for the main cache, as well as to decide on their relative sizes. Yet, the purpose of
the window cache in this architecture is to hold recently accessed items, thereby helping the entire
scheme handle workloads with a strong recency bias, without hurting the cache’s performance in
other workloads. As mentioned earlier, workloads with a strong recency bias incur many bursts
during which LRU gives the best performance. This is why in this article, as well as in Caffeine’s
release, we limit ourselves to configurations in which the eviction policy of the window cache is
LRU. It also explains why the window cache has no admission policy at all.

As for the main cache, we employ the SLRU eviction policy (Karedla et al. 1994). The A1 and A2
regions of the SLRU policy in the main cache are divided such that 80% of the space is allocated
to hot items (A2) and the victim is picked from the 20% nonhot items (A1), as recommended by
(Karedla et al. 1994).

In the current release of Caffeine (2.0), the size of the window cache is 1% of the total cache
size and that of the main cache is 99%. The motivation behind W-TinyLFU is to have the scheme
behave like TinyLFU for LFU workloads while still being able to exploit LRU patterns such as
bursts. Because 99% of the cache is allocated to the main cache (with TinyLFU), the performance
impact on LFU workloads is negligible. On the other hand, some workloads allow for exploitation
of LRU-friendly patterns. In these workloads, W-TinyLFU is better than TinyLFU. As we report in
Section 5, for Caffeine’s needs, W-TinyLFU is a top alternative for a wider variety of workloads
and thus the added complexity is justified.

TinyLFU was added into the Caffeine project after most other schemes were already imple-
mented in its simulator. Our experience doing this exposed several qualitative benefits for TinyLFU
compared to other state-of-the-art schemes. As we mentioned previously, the latter typically main-
tain ghost entries, which adds complexity to the implementations. Further, they involve a higher
memory overhead. The overall space overhead of W-TinyLFU in Caffeine is 8 bytes per cache
entry.3 This is significantly lower than the overhead of any scheme that requires explicit man-
agement of ghost entries, such as ARC and LIRS, since there are usually more ghost entries than
elements in the cache. In particular, the identifier of each such entry can be at least 8 bytes plus
the space overhead of associated data structures. Also, the development time was faster in the case
of TinyLFU (and W-TinyLFU) because the policy is less invasive, as there is no need to rework the
main eviction scheme to account for ghost entries polluting the other data structure.

Finally, in the appendix, we show that for any workload, W-TinyLFU always offers a hit ratio that
is at least as high as the one obtained by an LRU cache whose size is the same as the window cache
of W-TinyLFU, which addresses limitation 2 of TinyLFU. Additionally, limitation 3 is addressed
whenever the window cache size is at least one.

5 EXPERIMENTAL RESULTS

5.1 Methodology

In this section, we examine the utility of TinyLFU as a practical cache admission policy. Our eval-
uation is divided into three parts: First, in Section 5.2, we examine the impact of augmenting three
baseline eviction policies, namely, LRU, Random, and LFU, with a TinyLFU admission policy. This
part is performed using a Java prototype that can be instantiated with a given cache size (in terms
of number of items it can store), a file that contains a trace of accesses, and one of the afore-
mentioned cache management schemes. The prototype then consumes the file, returning for each
access whether according to the chosen management scheme and cache size it would have been

3The total metadata size is larger since the LRU policy is maintained as a queue with forward and backward pointers adding

two pointers for each in-memory item.
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a hit or a miss as well as overall statistics. The prototype used a counting Bloom filter with all
optimizations described in Section 1.

Our second set of evaluations, reported in Section 5.3, is performed using the actual Caffeine
implementation (Manes 2016). In the current release of Caffeine (2.0), the TinyLFU histogram is
maintained for a sample that is 10 times the cache size. Also, Caffeine uses a CM-Sketch with
four hash functions and 4 bits per counter. For best performance, each set of 16 counters is stored
with a 64-bit alignment. This way, the Reset operation halves 16 counters at once with simple bit
manipulation techniques.

We have evaluated TinyLFU both with the generic CBF implementation and with the aforemen-
tioned CM-Sketch configuration and could not find any empirically meaningful hit ratio difference.
Yet, since the Caffeine CM-Sketch realization is precoded to a specific highly efficient configura-
tion, it is significantly faster than the generic CBF implementation. Consequently, we have used
the Caffeine implementation in our comparative study.

We have compared the obtained hit ratios of a large number of cache management policies.4 Yet,
for brevity, we report only the best-performing ones. In the third set of measurements, reported in
Section 5.4, we explore the various types of errors accumulated by TinyLFU’s various mechanisms
as well as the total error.

For the evaluations, we employ both constant distributions of Zipf 0.7 and Zipf 0.95 and an
SPC1-like synthetic trace (Megiddo and Modha 2003) (denoted SPC1-like later) as well as real
traces. In the synthetic Zipf traces, items are picked according to the corresponding distribution
from a set of 1 million objects. Further, caches are given a long warm-up time (20 times the sample
size) and we present them at their highest hit ratio (in percentage). The SPC1-like trace contains
long sequential scans in addition to random accesses and has a page size of 4Kbytes (Megiddo and
Modha 2003). In the real traces, the caches are not warmed up; since the distribution gradually
changes over time, no warmup is necessary.

Our real workloads come from various sources and represent multiple types of applications, as
detailed here:

—YouTube: A YouTube trace is generated from a YouTube dataset (Cheng et al. 2008). Specif-
ically, the trace in Cheng et al. (2008) includes a weekly summary of the number of accesses
to each video rather than a continuous timeline of requests. Hence, for each reported week,
we have calculated the corresponding approximate access distribution and generated syn-
thetic accesses that follow this distribution on a week-by-week basis. Note that there is no
recency information in this trace. Moreover, in some experiments, we varied the number of
requests played from each week’s distribution as a parameter to demonstrate how quickly
algorithms adjust to changes in the workload.

—Wikipedia: A Wikipedia trace containing 10% of the traffic to Wikipedia during 2 months
starting in September 2007 (Urdaneta et al. 2009).

—DS1: A database trace taken from Megiddo and Modha (2003).
—S3: A search engine trace taken from Megiddo and Modha (2003).

4The Caffeine simulator implements the following schemes: Belady’s optimal (Belady 1966), an unbounded cache, LRU,

MRU, LFU, MFU, FIFO, Random, TinyLFU, W-TinyLFU, Clock (Corbato 1968), S4LRU (Huang et al. 2013), SLRU (Karedla

et al. 1994), MultiQueue (Zhou et al. 2001), Sampled LRU (Psounis and Prabhakar 2002), Sampled MRU (Psounis and Prab-

hakar 2002), Sampled LFU (Psounis and Prabhakar 2002), Sampled MFU (Psounis and Prabhakar 2002), Sampled FIFO (Psou-

nis and Prabhakar 2002), 2Q (Johnson and Shasha 1994), TuQueue (OpenBSD 2014), LIRS (Jiang and Zhang 2002), Clock-

Pro (Jiang et al. 2005), ARC (Megiddo and Modha 2003, 2006), CAR (Bansal and Modha 2004), and CART (Bansal and Modha

2004).
5We have experimented with several other skewed distributions and obtained very similar qualitative results.
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—OLTP: A trace of a file system of an OLTP server (Megiddo and Modha 2003). It is important
to note that in a typical OLTP server, most operations are performed on objects already in
memory and thus have no direct reflection on disk accesses. Hence, the majority of disk
accesses are the results of writes to a transaction log. That is, the trace mostly includes
ascending lists of sequential block accesses sprinkled with a few random accesses due to an
occasional write replay or in-memory cache misses.

—P8 and P12: Two Windows server traces from Megiddo and Modha (2003).
—Glimpse: A trace of the Glimpse system describing an execution of an analytic query (Jiang

and Zhang 2002). The main characteristic of this trace is an underlying loop, along with
other types of accesses.

—F1 and F2: Traces from applications running at two large financial institutions, taken from
the UMass trace repository (Liberatore and Shenoy 2016). These are fairly similar in struc-
ture to the OLTP trace for the same reasons mentioned previously.

—WS1, WS2, and WS3: Three additional search engine traces, also taken from the UMass
repository (Liberatore and Shenoy 2016).

Notice that the DS1, OLTP, P8, P12, and S3 traces were provided by the authors of ARC (Megiddo
and Modha 2003) and represent potential ARC applications. The SPC1-like synthetic trace is also
by the authors of ARC (Megiddo and Modha 2003). Similarly, the Glimpse trace is provided by the
authors of LIRS (Jiang and Zhang 2002).

We have also used the YouTube workload to measure the impact of the dynamics of the dis-
tribution on the performance. To do so, instead of playing the entire amount of views in a week,
we only played a random subset from each week. These tests simulate the behavior of the caches
when the workload is very dynamic.

In our figures, LRU and Random refer to eviction policies, while TLRU and TRandom refer to
LRU and Random caches augmented by TinyLFU, respectively. For LFU cache eviction, we tested
two options: WLFU that uses both the LFU eviction policy and LFU admission policy implemented
using an accurate sliding window. TLFU is the name we gave an LFU cache augmented with
TinyLFU. Further, ARC represents the ARC policy and LIRS represents the LIRS policy, while W-
TinyLFU stands for the W-TinyLFU scheme (1% LRU window cache and 99% main cache managed
with TinyLFU admission policy and an SLRU eviction policy). In graphs where we explore differ-
ent window cache sizes for W-TinyLFU, the window size is written in parentheses; for example,
W-TinyLFU(20%) represents a window cache that consumes 20% of the total cache size.

5.2 Results of Augmenting Caches with TinyLFU

Figure 6 shows the results of the TinyLFU admission policy on the performance of several eviction
policies mentioned earlier under constant skewed distributions. As can be seen, under constant
distributions, all caches that are augmented with TinyLFU behave in a similar way. Surprisingly,
LFU cache eviction yields only a marginal benefit over the TinyLFU-augmented LRU and Random
techniques. Let us note that in such skewed distributions, the maximal cache hit ratio is theoret-
ically bounded regardless of its size. Intuitively, for a distribution function fi , this bound can be
roughly computed by the integral over max(0, fi − 1) (since the first occurrence is always a miss)
divided by the integral over fi .

We conclude that for constant skewed distributions, the TinyLFU cache admission policy is an
attractive enhancement—for example, the augmented policies with a 1,000-item cache obtain better
or similar hit ratios than the corresponding nonaugmented ones with a 4,000-items cache. While
augmenting LFU yields a slightly higher hit ratio, the overheads of LFU may justify using a simpler
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Fig. 6. Augmenting arbitrary caches with a TinyLFU admission policy.

cache eviction policy. Particularly, LRU and even Random offer low overheads with comparable
hit ratios.

The second experiment we did was testing the augmented caches on a dynamic distribution.
To do so, we used a dataset that describes the popularity of 161K newly created YouTube videos
over 21 weeks starting on April 16, 2008 (Cheng et al. 2008). We evaluated the approximated
frequencies of each of the videos each week and created a distribution that represents each week.
Our experiments therefore swap between these distributions every given amount of requests as
explained later.

We measured two metrics: The first is how fast we can change the distributions, that is, what is
the effect of the number of requests we play from each week’s distribution on the hit ratio of our
TinyLFU augmented caches. The second is the impact of the cache size on the achieved hit ratio
when the distribution change speed is taken from the trace.

The results of this experiment are shown in Figure 7. As can be observed, TinyLFU is effective
in augmenting arbitrary caches even in dynamic workloads—for Random it adds roughly 10% to
its hit ratio and for LRU it adds about 5%. Further, the augmented policies obtain better hit ratios
when the distribution changes more slowly, as expected from all LFU caches. Yet, in this workload,
the difference between an augmented Random cache and an augmented LRU cache to a true LFU
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Fig. 7. YouTube dataset.

cache is more significant than in the static distribution case. Therefore, picking the correct cache
victim seems to be more important in dynamic workloads than in static workloads.

The third measurement we made was running the experiment on the Wikipedia access trace.
We first studied the required ratio between the TinyLFU sample size and cache size on arbitrary
sequences of 100 million consecutive requests from different points in the trace. Second, we used
the best ratio we found and tested it on different cache sizes. These results are shown in Figure 8.
Unlike static workloads, real-life workloads gradually change over time. Therefore, using a very
large TinyLFU sample can even reduce the obtained hit ratio as it slows the pace by which the
cache adjusts to the workload.

We note that although WLFU and TLFU achieved nearly identical hit ratios, the main differ-
ence between WLFU and TLFU is in their metadata costs. For example, in the YouTube workload,
we used only 0.57 bytes per sample element. Since the TinyLFU statistics are maintained for a
sample 9 times the size of the cache, the total metadata cost of TinyLFU is 9 · 0.57 = 5.13 bytes per
cache entry. If we consider that each cache entry should contain a video ID that requires 11 bytes,
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Fig. 8. Evaluation over the Wikipedia trace.

we conclude that TinyLFU is able to approximately remember a history 9 times bigger than the
cache with less space overhead than what is required to store just the keys of all cached items.

For comparison, WLFU is required to remember an explicit history 9 times bigger than the
cache content. Maintaining this history is expected to cost, even in the most space-efficient imple-
mentation, 99 bytes per cache entry. In addition, to operate quickly, it is required to maintain an
explicit summary of these items, since iterating over the window and counting the frequency of
cached items and replacement candidates is very slow. Even if we neglect this additional memory
overhead, WLFU’s admission policy still requires almost 20 times more space than TinyLFU.

5.3 Experiments with Caffeine

5.3.1 Comparative Analysis.

Databases. Figures 9 and 10 present the hit ratios of TLRU and W-TinyLFU compared to the state-
of-the-art schemes ARC and LIRS on the Glimpse (Jiang and Zhang 2002) and DS1 (Megiddo and
Modha 2003) traces. In both traces, TLRU and W-TinyLFU provide very good results. In the Glimpse
trace, they are on par with LIRS, while on the DS1 trace, both TLRU and W-TinyLFU outperform
all other policies. This indicates that the TinyLFU approach is a viable option for various types of
databases.
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Fig. 9. Glimpse trace.

Fig. 10. DS1 database trace.

Windows File System. Figures 11 and 12 show results for the window workstation traces P8 and
P12 (Megiddo and Modha 2003). In these traces, we evaluate W-TinyLFU with both 1% window
cache and with a 20% window cache. As shown, both achieve very attractive hit ratios and out-
perform the other policies for all but the largest data points. In Figure 12, the graphs for the 20%
window cache and 1% window cache intersect each other twice. This indicates a potential benefit
for being able to adaptively change the size of the window cache.

Disk Accesses in OLTP Systems. In the OLTP trace shown in Figure 13, TinyLFU behaves poorly
due to the peculiarity of this trace as reported in Section 5.1. That is, it consists of ascending lists of
sequential block accesses sprinkled with a few random accesses due to an occasional write replay
or in-memory cache misses. Therefore, TLRU is inferior to the rest. Figure 14 and Figure 15 show
results for two additional OLTP traces from servers running financial applications (Liberatore and
Shenoy 2016), exposing similar phenomena. Yet, in these two last figures, the differences between
all schemes are smaller.

As can be seen, in all OLTP traces, W-TinyLFU’s performance is comparable with the state of
the art. W-TinyLFU outperforms LRU and LIRS in all three traces. Compared to ARC, W-TinyLFU
is slightly better in the OLTP and F2 traces, while in the F1 trace, it is only better than ARC in
smaller cache sizes with marginal differences between them.

ACM Transactions on Storage, Vol. 13, No. 4, Article 35. Publication date: November 2017.



35:20 G. Einziger et al.

Fig. 11. P8 windows trace.

Fig. 12. P12 windows trace.

Fig. 13. OLTP trace.

We present here only W-TinyLFU(20%) since it is slightly better than W-TinyLFU(1%) on these
traces and doing so helps in distinguishing between the various lines in the graphs. Section 5.3.2
explores the impact of the window cache size in W-TinyLFU on the hit ratio, where it is shown that
a 20% window cache is needed for the best results with OLTP traces. Unfortunately, increasing the
window cache size reduces W-TinyLFU’s performance with the other traces. Hence, in the default
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Fig. 14. Financial application (F1) trace.

Fig. 15. Financial application (F2) trace.

configuration of the current version of Caffeine (2.0), the window cache size is fixed at 1% of the
total cache size in order not to burden the user with extra configuration parameters.

SPC1-like. Figure 16 shows our result on the SPC1-like trace taken from Megiddo and Modha
(2003). As can be observed, TLRU and W-TinyLFU outperform all other policies on that trace as
well.

Search Engine Queries. Figures 17, 18, 19, and 20 demonstrate the behavior of W-TinyLFU and
TLRU with a variety of search engine traces from Megiddo and Modha (2003) and Liberatore and
Shenoy (2016). As can be observed, between ARC and LIRS, ARC seems better for small caches
and LIRS for large ones. Yet, both TLRU and W-TinyLFU outperform them throughout.

5.3.2 Tuning the Window Cache Size in W-TinyLFU. As reported earlier, for the majority of
traces, W-TinyLFU with a window cache whose size is 1% of the total cache outperformed (or tied)
all other schemes. In contrast, in OLTP, F1, and F2, TinyLFU typically underperformed, and while
a window cache size of 1% improved the hit ratio, it was still not the top performer. In these traces,
a larger window cache is needed to better handle their recency bias, as mentioned previously.
Figure 21 explores the impact of the cache allocation between the window cache and the main
cache on the hit ratio of W-TinyLFU under these three traces: OLTP, F1, and F2. For OLTP we
tested a total cache size of 1,000 items, while for F1 and F2 the total cache size is 2,500 items. As
can be observed, window cache sizes of 20% to 40% seem to perform best on these traces since,
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Fig. 16. SPC1-like trace.

Fig. 17. Search engine trace (S3).

Fig. 18. Search engine trace (WS1).
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Fig. 19. Search engine trace (WS2).

Fig. 20. Search engine trace (WS3).

Fig. 21. Window/main cache balance.

as discussed earlier, a large window cache enables better handling of significant recency bias in
the workload. In contrast, we can see that for the DS1 and S3 traces, the hit ratio degrades almost
linearly as the window cache size is increased, since these traces exhibit little or no recency bias.
Automatic dynamic tuning of the window size is left for future work.
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Fig. 22. Different errors for 1K items cache under Zipf 0.9 distribution, for different sample sizes.

5.4 Sources of Inaccuracy

The most obvious source of inaccuracy in TinyLFU is the approximation error introduced by false
positives. However, there is also the truncation error that is caused from performing integer divi-
sion rather than a real (floating-point) division in the reset operation. For static distributions it is
also feasible to measure the sampling error, that is, how well TinyLFU was able to understand the
underlining distributions. All these factors together can explain the (in)accuracy of TinyLFU.

We define the Sampling Error to be the difference between the hit ratio of an accurate TinyLFU
with floating-point counters and the ideal hit ratio achievable under a constant distribution. The
sampling error can be lowered for static distributions by using a larger sample size.

Next, the Truncation Error is the change in hit ratio between an accurate TinyLFU (with no
Doorkeeper and no false positives) and floating-point counters and that of an accurate TinyLFU
with integer counters. The only difference between these two implementations is the type of di-
vision performed in the reset operation. The truncation error can be lowered by allowing higher
counts by counters (more bits per counter).

Finally, the Approximation Error is the difference in hit ratio we obtain by using an approximated
version of TinyLFU (as described in this article) instead of an accurate one. This means using a
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counting Bloom filter instead of a hash table. The difference in hit ratio is due to false positives
that may distort the sampling and make infrequent items appear frequent.

The results for a static Zipf 0.9 distribution are displayed in Figure 22. As can be observed,
the approximation error does not appear at all until ≈ 1.25 bytes per sample item. That is, the
approximate version of TinyLFU offers the same hit ratio as the accurate version. As expected, the
truncation error is smaller for small sample sizes, and therefore, in a 9K-item sample, it is more
dominant than in a 17K-item sample. In the 17K sample, the truncation error is almost negligible.

The sampling error is the most tricky one since increasing the sample size only helps with static
distributions. The sampling error gets smaller the larger we set the sample size. This behavior is
obviously not the case for real workloads, in which the sample size is to be chosen according to
an empirical trial-and-error process.

Recall also that the TinyLFU version that was implemented in Caffeine employs CM-Sketch
rather than a counting Bloom filter. In its default configuration, it allocates 8 bytes per cached entry
and maintains a sample size that is 10 times the cache size. In other words, it uses 0.8 bytes per
element. By doubling the allocated space to 16 bytes per entry, the obtained hit ratio increases by
approximately ≈ 0.5% on the various traces. In other words, the current configuration of Caffeine
carries roughly a 0.5% approximation error.

6 CONCLUSION

We have introduced TinyLFU, an approximate frequency-based cache admission policy. We
showed that TinyLFU can augment caches of arbitrary eviction policy and significantly improve
their performance. We also optimized the memory consumption of TinyLFU using adaptation of
known approximate counting techniques with novel techniques tailored specifically in order to
achieve low memory footprints for caches.

Unlike previous schemes that combine ghost cache entries into the eviction policy consider-
ations, in TinyLFU, the admission policy is orthogonal to the eviction policy. This decoupling
follows the separation-of-concerns principle, simplifies design and implementation, and enables
optimizing each independently. In particular, the use of approximate sketching techniques for the
admission policy enables maintaining statistics for a relatively large sample while consuming only
small amounts of metadata.

The performance of TinyLFU and its variant W-TinyLFU have been explored and validated
through simulations using both synthetic traces and multiple real world traces from several differ-
ent sources. As mentioned before, TinyLFU is freely available as part of the open-source Caffeine
Java caching project (Manes 2016). In the future, we will look into an improved implementation
based on a succinct hash table design (Einziger and Friedman 2015b, 2016). Also, we are currently
working on dynamically adapting W-TinyLFU parameters to the traces, in order to obtain the best
results in all traces without any manual tuning. The basic idea is to maintain a compound score that
represents whether the trace is currently behaving in a more “frequency”- or “recency”-oriented
manner and automatically adjust W-TinyLFU’s parameters accordingly.

APPENDIX

A THE COMPETITIVE RATIO OF TINYLFU

In this section, we analyze the competitive ratio of TinyLFU. The results that follow assume that
the eviction policy is either LRU or FIFO. Yet, we believe that they can be adjusted to other deter-
ministic eviction policies such as MRU and CLOCK. Further, for simplicity, we ignore the effects of
false positives in the CBF/MI-CMS of TinyLFU on counters’ precision. The analysis itself follows
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similar steps as the competitive analysis of LRU (Borodin and El-Yaniv 1998) and LRFU (Cohen
et al. 2002).

Theorem A.1. Let CACHE be an LRU or FIFO cache of sizeC enhanced with a TinyLFU admission
policy whose sample size isW . AssumingW ≥ 2C , the competitive ratio of CACHE is at mostW and
at bestW /4 +C/2.

The theorem follows directly from the combination of the two lemmas that follow.

Lemma A.2. CACHE isW competitive.

Proof. For the proof, we break any sequence σ of requests intoC-phases, where eachC-phase
consists of requests toC different objects. Thus, the first request of aC-phase (other than the first
C-phase) accesses a different object than all other objects in the previousC-phase and it is the first
such request in σ . We now show that CACHE cannot incur more thanW cache misses during such
a C-phase.

Since the size of the cache isC , during eachC-phase, each cache replacement policy must incur
at least one cache miss (Borodin and El-Yaniv 1998). Further, due to the LRU (or FIFO) replacement
policy of CACHE, no item can be inserted into the cache more than once during the sameC-phase
and any item inserted into the cache or requested at least once while in the cache cannot be evicted
during this C-phase.

In particular, denote the first miss in a given C-phase m1 and let m2 be any following miss
during the sameC-phase. If object x is the LRU (or FIFO) eviction candidate of CACHE duringm2,
it is guaranteed that x was not requested between m1 and m2 (inclusive). Hence, during m2, the
TinyLFU estimation for x is bounded by its estimate duringm1, which is bounded byW /C . Notice
that any potential Reset operation occurring while an object y is outside the cache would halve
the TinyLFU estimations for both y and any such x proposed due to a miss request to y. In other
words, an object that is not inside the cache will enter the cache after at mostW /C misses, unless
the C-phase ends before.

Overall, during the sameC-phase, at mostC objects can be inserted into the cache at most once,
and each such object may cause at most W /C misses. Hence, altogether, there can be at most W
misses during any C-phase. �

Next, denote that L = �W2 log W
C
�. Recall that the maximal value for any counter in TinyLFU

isW /C and therefore the maximal possible estimation of each object is alsoW /C . Further, every
W /2 requests, each counter is divided by two. Hence, the estimation associated with each object
in TinyLFU reaches zero after at most L requests in which it is not accessed.

Lemma A.3. AssumingW ≥ 2C , CACHE is at bestW /4 +C/2 competitive.

Proof. We construct a sequence of requests σ such that the ratio between the number of misses
occurred by CACHE while serving σ and the minimal possible number of misses by any cache serv-
ing σ approachesW /4 +C/2. Our desired sequence consists of accesses to C + 1 distinct objects,
denoted x1,x2, . . . ,xC+1. Once again, we partition σ intoC-phases, this time specially constructed
such that CACHE will experienceW /4 +C/2 misses when serving this C-phase, while an optimal
caching policy could incur only a single miss.

Recall that by the definition of L, after L consecutive requests to the same object x , the TinyLFU
estimation of x would beW /C , while all other estimations would be zero. Hence, the firstC-phase

in σ consists of requests to xL
2 ,x3,x

W /C
4 ,x5,x

W /C
6 , . . . ,xC ,x

W /C
C+1 , where x i means i consecutive

requests to x . At the end of thisC-phase, the TinyLFU estimation for x1 is zero, while the TinyLFU
estimations of all even objects are W /C (or W /2C depending on the relation between W and C)
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and for the odd objects it is one. For simplicity, we assume here that C is an odd number, but the
proof can be adjusted for even numbers as well. Further, in terms of eviction priority in the LRU
or FIFO cache of CACHE, the objects are ordered in the order they were requested.

The second C-phase starts with requests to xk1

1 ,x2,x
k3

3 ,x4 . . . ,x
kC

C
, where ki is the number of

consecutive requests required until the estimation of xi will surpass that of xi+1 and therefore it
will be admitted into the cache instead of xi+1. By the assumption about the eviction policy and
TinyLFU, the requests to odd elements cause ki misses before they are admitted. Notice that the
requests of the first phase initially bring the value of each even element toW /C . Yet, as C/2 even
elements are requestedW /C times, plusC/2 odd elements that are requested once, the estimations
of the CACHE cache victim is already halved by the time it becomes a victim. Hence, ki =W /2C
and the total number of misses due to odd objects isW /2C ×C/2 =W /4.

In contrast, the (C + 1)/2 even objects cause a single miss each, or �C/2� misses combined.
Hence, the total number of misses during the second phase isW /4 +C/2.

We finalize the second C-phase by adding the following requests: xL
1 ,x2,x

(W /C )
3 ,x4,x

W /C
5 ,

. . . ,xC−1,x
W /C
C

. These cause no misses as all items are already in the cache. Further, at the end
of the phase, the state of TinyLFU and the LRU or FIFO cache of CACHE is equivalent to what it
was at the end of the first phase. Consequently, we can extend the sequence with additional such
C-phases infinitely many times. �

B ON THE COMPETITIVENESS OF W-TINYLFU VERSUS LRU

Next, we show that for any workload, the hit ratio of an entire W-TinyLFU cache with a window
cache of size k is at least as high as the hit ratio of an LRU cache of size k . In particular, this means
that the competitive ratio of such a W-TinyLFU cache is at least as good as that of an LRU cache
of size k . In the proof, we do not rely on any particular admission policy into the main cache or on
the replacement policy of the main cache, meaning that the result holds for any choice of them.

We start with a few notations. The order of requests in a workload is a total order. Given two
requests r1 and r2 of the same workload σ , we denote by r1 < r2 the fact that r1 appears before r2

in σ and by r1 ≤ r2 the fact that r2 does not appear before r1 in σ . When r1 ≤ r2 and r2 ≤ r1, then
r1 = r2 (they are the same request). Given a cacheC and a workload σ , we denote by HR (C,σ ) the
hit ratio obtained by C when faced with σ .

Theorem B.1. Consider a W-TinyLFU-based cacheT with a window cache of size k whose eviction
policy is LRU and an LRU cache L of size k . For any workload σ , HR (T ,σ ) ≥ HR (L,σ ).

Proof. Assume, by way of contradiction, that the theorem does not hold and there exists a
workload σ such that HR (T ,σ ) < HR (L,σ ). Hence, there has to be at least one request in σ such
that r is a hit in L but a miss in T . Choose an arbitrary such request r and denote the object it
accesses x .

Since r generated a hit in L, x was accessed by a previous request r ′. We continue by case
analysis.

Suppose r ′ was a miss in L. In this case, we claim that r ′ must have been a hit in T . Otherwise,
if r ′ was a miss inT , then x would have been inserted into the window cache ofT , whose eviction
policy is LRU and size is the same as the size of L. Hence, if r would have resulted in a miss inT , it
means that x was evicted between r ′ and r from the window cache of T , and therefore there have
been requests to at least k other distinct objects between r ′ and r . Yet, by the LRU replacement
policy of L, in such a case, x should have been removed from L as well before r , a contradiction.

Next, suppose r ′ was a hit in L. From the same arguments as earlier, if r ′ was a miss in T , then
x would have been inserted into the window cache of T at r ′ and remained there until r , a con-
tradiction. Consequently, we establish that r ′ was a hit in T as well. Further, from the assumption
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Fig. 23. Illustration of requests for x applied to cache T .

that r is a miss inT , then x must have been stored in the main cache ofT during r ′ and evacuated
between r ′ and r . See the illustration in Figure 23.

Consider the latest request r ′′ ≤ r ′ in σ at which x is found inT ’s main cache, but in the previous
request r ′′′ to x in σ is found in T ’s window cache. By definition, such an r ′′′ must exist. Further,
all requests to x between r ′′′ and r ′ are a hit in T . From the same arguments as before, there are
requests to at least k other distinct objects than x is between r ′′′ and r ′′. Thus, either r ′′′ or r ′′

must be a miss in L.
In summary, we establish that for any object x accessed during σ , for any possible request that

results in a miss in T and a hit in L, we can trace a unique previous request to x that results in a
hit in T and a miss in L. Thus, HR (L,σ ) cannot be larger than HR (T ,σ ), a contradiction. �
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