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ABSTRACT
Developing a silver bullet software cache management policy is

a daunting task due to the variety of potential workloads. In this

paper, we investigate an adaptivity mechanism for software cache

management schemes which offer tuning parameters targeted at

the frequency vs. recency bias in the workload. The goal is au-

tomatic tuning of the parameters for best performance based on

the workload without any manual intervention. We study two ap-

proaches for this problem, a hill climbing solution and an indicator
based solution. In hill climbing, we repeatedly reconfigure the sys-

tem hoping to find its best setting. In the indicator approach, we

estimate the workloads’ frequency vs. recency bias and adjust the

parameters accordingly in a single swoop.

We apply these adaptive mechanisms to two recent software

management schemes. We perform an extensive evaluation of the

schemes and adaptation mechanisms over a large selection of work-

loads with varying characteristics. With these, we derive a parame-

terless software cache management policy that is competitive for

all tested workloads.
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1 INTRODUCTION
Caching is a well-known technique for boosting system’s perfor-

mance, by maintaining a relatively small part of the data in a fast

nearby memory known as a cache. In this work we are interested

in software caches, i.e., caches that are maintained by software sys-

tems such as middleware, operating systems, files systems, storage

systems, and databases, rather than hardware caches that are im-

plemented in hardware, such as the CPU’s L1, L2, and L3 caches.

Repeated access to a data item that is already stored in the cache,
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known as a cache hit, is served much faster than fetching the data

from its actual storage. All other accesses are calledmisses. Deciding
which items should be placed in the cache is the role of the cache
management policy. Obviously, the holy grail of cache management

is guessing which items would yield the highest hit ratio, i.e., the
ratio between cache hits and the overall number of accesses. Typ-

ically, such schemes try to identify patterns in the workload that

would serve as signals of how to obtain the highest possible hit

ratio.

Recency and frequency are the two most common signals used by

software cache management policies. Recency captures the likeli-

hood that an item that was recently accessed will be accessed again

in the near future. In contrast, frequency captures the likelihood

that an item that has been accessed frequently will be accessed

again in the near future. Since in most workloads items’ popularity

changes over times, usually, the frequency is measured w.r.t. some

aging mechanism such as a sliding window [17] or an exponential
decay [13, 19].

Empirically, different workloads exhibit varying levels of recency

vs. frequency, which is why designing a single “best” cache man-

agement scheme is an elusive goal. Hence, system designers are

faced with the non-trivial task of understanding the characteris-

tics of their workloads and then investigating which known cache

management policy would provide the highest hit ratios for these

workloads. Further, some cache management policies have several

tuning parameters, which requires systems designers to understand

how to configure them. Worse yet, when designing a new system,

its future workloads might not be known apriori, so its design-

ers cannot even tell which cache management policy to choose.

Alternatively, in a general caching library, to relieve users from

dealing with setup parameters, these parameters might be set to

default values which provide “best” results for “most workloads”.

For other systems’ workloads, such settings may imply far from

optimal results.

In summary, there is a need for an adaptive software cache

management policy that would obtain competitive hit ratios on

as many varying workloads as possible. Exploring such adaptivity

mechanisms for software caching is our focus.

Contributions
In this paper, we identify two adaptivity mechanisms for software

cache management schemes that expose tuning parameters that

impact their obtained hit ratio. The first mechanism is based on the
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well-known hill climbing method [26] that we adjust to cache man-

agement tuning. Specifically, we periodically adjust the parameters

in a certain direction in terms of configurations that work better for

recency biased workloads vs. frequency biased ones. After some

time, the newly obtained hit ratio is compared with the previously

measured one. If a noticeable improvement is obtained, then the

tuning parameters are further adjusted in the same direction. Other-

wise, the tuning parameters are adjusted in the opposite direction,

and this goes on repeatedly. The main advantage of hill climbing is

that it can be implemented without introducing any meta-data. Yet,

it runs the risk of getting stuck in a local maximum, and it never

stops oscillating.

The second approach we examine is a novel indicator based solu-
tion. Here, we periodically calculate an estimation of the workloads’

frequency vs. recency bias and adjust the tuning parameters accord-

ingly in a single swoop. This approach requires some meta-data to

calculate the above estimation but converges quickly.

We apply these two approaches to the recently introduced FRD [25]

andW-TinyLFU schemes [13]
1
. Both schemes split the overall cache

area into two sub-caches, one for “newly arriving items” and the

other for more “frequent items”. Both schemes offer the division

between these sub-caches sizes as a tuning parameter but differ

in the exact rule for deciding which item should go into which

sub-area. In W-TinyLFU, this decision is based on an admission
filter implemented through a space-efficient sketch [11], whose

frequency aging mechanism serves as another potential area for

adaptation.

Here, we explore ways of dynamically adapting the parameters of

FRD and W-TinyLFU to the online workload using the hill climbing

and indicator methods mentioned above. Specifically, we examine

adjusting the relative size of the two sub-cache areas for both FRD

and W-TinyLFU. For W-TinyLFU, we also examine manipulating

the aging parameters of the sketch employed by its admission filter.

Finally, we evaluate our proposed schemes against a large set of

traces from various sources, some proposed by authors of previous

works and some offered by Caffeine users [23]. In our evaluation

the best of our adaptive schemes are always competitive with the

best alternative.

2 RELATEDWORK
Belady’s optimal cache management policy [5] looks into the future

and evicts from the cache the entry whose next access is furthest

away. This policy is impractical in most domains as we cannot

predict the future. It serves as a useful upper bound for cache poli-

cies’ performance. In practice, cache management policies involve

heuristics and optimizations for typical access patterns.

Least Recently Used (LRU) [14] is based on the assumption that

the least recently used item is also the least likely to be used in

the future. Thus, once the cache is full, it evicts the LRU item to

make room for the newly arriving item. Alternatively, the Least
Frequently Used (LFU) algorithms assume that access frequency is

a good estimator of future behavior [2, 3, 13, 17, 18]. Realizing LFU

requires monitoring a large number of items that are no longer in

1
W-TinyLFU is implemented as part of the open source Caffeine Java 8 cache [23]. W-

TinyLFU was adopted, either directly or through Caffeine in multiple storage systems,

including Cassandra, LinkedIn’s feed, VMWare’s Corfu, RedHat’s InfiniSpan, Apache

Accumulo, Allegro, Amplitude, ScalaCache, druid.io, neo4j, Mangocache, and others.

the cache, which incurs significant overheads. The work of [13]

minimizes these overheads by monitoring past frequencies using

an approximate sketch. Moreover, LFU policies often employ aging,

where the frequency is calculated with respect to a specific sliding

window [17] or an exponentially decaying sample [2, 3]. Other

heuristics include reuse distance [1, 16, 20] to account for the time

between subsequent accesses to the same entry. Alas, the latter

requires remembering a large number of ghost entries.
Size is another dimension for optimization. In some cases, items

significantly differ in size, and thus size should be taken into ac-

count [6, 9, 32]. E.g., AdaptSize dynamically adjusts the cache ad-

mission probability to maximize the object hit ratio [6]. In contrast,

many cache policies maintain a fixed amount of items regardless

of size. This is effective when cached items have equal or similar

size, such as in the case of block caches and page caches. Further,

most popular video-on-demand and streaming systems break files

into (nearly) equal sized chunks (or stripes), each of which can be

cached independently. In this work, we target fixed-sized items.

Hyperbolic caching [7] is a recent proposal for an overall best

cache management policy. Hyperbolic caching can mimic multiple

eviction policies with the same internal data structures thereby

adapting its actual behavior to the workload. Another adaptive

policy is Adaptive Replacement Cache (ARC) [24]. The drawback
of both these policies is that they do not competitively capture

frequency biased traces (as we show in our evaluation). Also, ARC

requires maintaining a large number of ghost entries.

LRFU [19] rates each item by combining its recency and fre-

quency, whose balance is controlled by a parameter λ. While in-

stantiating LRFU with the “right” λ value for a given workload

may yield high hit ratios, choosing a “wrong” value results in poor

performance. Automatically adjusting λ to the workload is an open

issue. Another issue that prevents LRFU’s broad adoption is its

inherent high implementation and runtime costs.

The recently introduced Mini-Sim [31] approach suggests sim-

ulating multiple possible cache configurations concurrently. For

each simulation, a random sample of all accesses is processed to

reduce computation overheads. The challenge with this approach is

that naïvely sampling 1 out of r accesses is unlikely to capture the

characteristics of recency biased workloads as it is likely to miss

multiple accesses within a short period (here 1/r is the sampling
ratio). Therefore, Mini-Sim samples random 1/r keys and then feeds
all accesses for a sampled item to the simulated configurations. To

save space, the simulated cache size is set to be c/r where c is the
original cache size. Recall that the goal here is to find the best con-

figuration parameters rather than determining which items should

be in the actual cache.

Mini-Sim has the following drawbacks. The simulated configura-

tions must hold ghost entries for their stored items, which consume

storage space and execution time proportional to the number of

configurations simulated concurrently and the sampling ratio. We

experimented with applying the Mini-Sim approach to W-TinyLFU

and discovered that on caches of up to several thousands of items

as well as on frequency biased workloads, Mini-Sim requires a large

sampling ratio to yield accurate results. In particular, sampling

based on items’ IDs is less accurate on frequency biased workloads

since if none of the frequent items is sampled, the results of Mini-

Sim will mispredict the actual workloads’ behavior. Also, because
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of sampling, Mini-Sim takes a relatively long time to adapt to sig-

nificant changes in the workload. In contrast, our approach is more

risk-taking in the sense that we change the configuration without

first simulating the performance of the new configuration. Our

risk-taking approach avoids most of Mini-Sim’s overheads.

The recent LeCaR work studied utilizing machine learning tech-

niques for combining LRU and LFU replacement in an agile way [30].

The resulting method was shown to be superior to ARC and reacted

well to changes in the workload.

Several works have considered the unique aspects of SSD caching.

Most importantly, the work in [8] describes why Belady’s notion

of optimality is insufficient for SSDs and proposes a new optimal

offline algorithm whose goal is not only maximal hit ratio but

also taking into account container placement issues to reduce write

amplification and device wear. Pannier [21] focuses on the technical

details of implementing a container cache for SSD. Pannier utilizes

an adaptive credit system that limits the amount of SSD writes to a

predefined quota. Closest to our work is [15], which maintains an

explicit frequency statistics of objects using ghost entries and only

admits popular objects into the SSD cache, with ARC as the cache

replacement mechanism. This approach is similar to TinyLFU in

essence but utilizes ghost entries and not sketches.

In the area of hardware CPU caches, closest to our work is [28],

which proposes an adaptive mechanism for switching between

different replacement policies (LRU, LFU, FIFO, Random), but not

for tuning any configuration parameters.

3 AN OVERVIEW OFW-TINYLFU AND FRD
As hinted above, W-TinyLFU includes three components: the Main
cache, an approximated LFU based admission filter called TinyLFU,
and aWindow cache, as illustrated in Figure 1. Newly arriving items

are inserted into the Window cache. In principle, it can be main-

tained using any known policy, but in the Caffeine implementation,

theWindow cache uses LRU eviction [23]. Similarly, the Main cache

may employ any cache management scheme, but in Caffeine it is

implemented with SLRU eviction. The cache victim of the Window

cache as well as the would be cache victim of the Main cache are

then presented to the TinyLFU filter. The latter estimates the fre-

quency of both and chooses to insert/keep the item with the highest

estimate in the Main cache.

The size of the Window cache in W-TinyLFU can be fixed to any

relative portion of the total cache size from 0 − 100%. The authors

of W-TinyLFU [13] report that for the vast number of workloads

they have experimented with, up to 1% offered the best hit-ratios,

which is why this is the default configuration of the Caffeine cache

library [23]. Yet, in some significantly recency biased traces, the

size of theWindow cache had to be increased to as much as 20−40%

to match the best alternative scheme, typically either LRU or ARC.

The frequency estimation held by the TinyLFU admission filter is

implemented through a sketch, either aminimal increment counting
Bloom filter [10], or count min sketch [11]. The frequency statistics

are counted over a long sample whose length S is a multiple of

the cache size C . To age its entries, all counters are divided by an

aging factor once every S accesses, an operation called Reset in [13].

By default, the aging factor is 2, i.e., all counters are halved on

each Reset operation. Further, since items whose frequency is at

Figure 1: W-TinyLFU scheme: Items are first always admit-
ted to the Window cache and the victim of the Window
cache is offered to the Main cache, which employs TinyLFU
as its admission filter. We preserve here the terminology
of [13].

least S/C are always frequent enough to remain in the cache, the

counters’ maximal values are capped at S/C .
FRD [25] also divides the total cache area into two sections

called Temporal cache and Actual cache, each managed by LRU. FRD

maintains a long history of accesses, somewhat similar to ghost

entries in other modern schemes. On a cache miss, if the accessed

item appears in the stored history, it is inserted into the Actual

cache. Otherwise, the new item is inserted into the Temporal cache.

Similarly to W-TinyLFU, the ratio between the Temporal cache and

Actual cache is a tuning parameter. Based on measurements against

multiple traces, the authors of [25] recommend a default setting of

10% for the Temporal cache and leave dynamically adapting this

value is left for future work. Unlike W-TinyLU, FRD requires to

maintain an extended access history.

4 ADAPTIVE CACHE POLICY
In this section, we suggest a couple of methods for deriving adaptive

cache management policies. Specifically, we discuss an adaptation

of the well-known hill climbing algorithm [26] to the context of

caching as well as our novel indicator based adaptive scheme. To

make the presentation concrete, we first present the tuning pa-

rameters these schemes adjust in both W-TinyLFU and FRD in

Section 4.1. Yet, one can carry over the ideas to any scheme that

exposes tuning parameters for better handling of recency vs. fre-

quency biased workloads. The adaptive schemes are then discussed

in Section 4.2

4.1 The Tuning Parameters
For both W-TinyLFU and FRD, we explore dynamically adjusting

the relative size of thewindow (or Temporal) cache between 0−100%

of the total cache size. In the case of W-TinyLFU, we also examine

dynamically calibrating the sketch parameters used by the TinyLFU

admission filter itself that affect the speed of the frequency aging

process. We elaborate on these below.

4.1.1 The Window Cache Size. When the eviction policy of the

window (Temporal) cache is LRU, as in Caffeine and FRD, a large

window (Temporal) cache will yield an overall behavior closer to

LRU. In particular, when the size of the window (Temporal) cache

is 100%, we obtain exactly LRU. In contrast, since the W-TinyLFU

admission filter is based on the aged frequency of items, a small
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(a) Frequency biased configuration

(b) Recency biased configuration

Figure 2: Tuning W-TinyLFU and FRD: the partition be-
tweenwindow (Temporal) cache andmain (Actual) cache im-
plies a trade-off between recency and frequency.

Window cache tilts the emphasis towards frequency. Similarly, in

FRD the Actual cache is used to store frequent items. That is, if we

scale the main (Actual) cache closer to 100% of the total cache size,

we get a frequency oriented policy in both W-TinyLFU and FRD.

Figure 2 exemplifies this.

4.1.2 The W-TinyLFU Sketch Parameters. The W-TinyLFU admis-

sion filter has three configuration parameters: (i) the aging sample

length S , (ii) the aging factor, which by default is 2 on each Reset

operation but can be made larger or smaller, and (iii) the frequency
increment on each item’s access, which by default is 1 but can also

be adjusted.

We start with the sample length S . By shortening S , we limit

the maximal frequency count of items. Such limitation reduces

the maximal frequency based difference between items and also

expedites their aging process since their maximal value is lowered.

Both reduce the impact of frequency and make the filter more

recency biased.

Next, increasing the aging factor used to divide counters in Reset

operations yields faster aging and vice versa. I.e., increasing this

factor tilts the admission filter towards recency while decreasing it

favors frequency.

Finally, we claim that enlarging the counters increment on each

item’s access from 1 to a larger value also favors recency. This is

because a large increment quickly brings the items counters’ to

their maximal value, meaning that the counters’ values reflect more

how recently each item was accessed than how many times it was

accessed
2
. Moreover, we invoke Reset once the total increments

reaches the sample size so Reset operations are executed per fewer

items and aging happens quicker. Hence, the impact of historical

frequency counts rapidly diminishes in favor of recent activity.

For example, consider an increment value of 8. The counters rep-

resenting an arriving item are increased by 8, reflecting a frequency

estimation of 8. After a single Reset operation, the frequency estima-

tion is halved to 4, after a second Reset these counters are halved to

2, etc. At the extreme, when the increment is set to S/C , W-TinyLFU

becomes very recency biased. The impact of these manipulations is

explained in Figure 3.

The motivation for changing the increment rather than the sam-

ple length or reset value comes from an engineering perspective.

That is, a division by two is efficiently implemented with shift oper-

ations and dividing by another factor would require floating point

arithmetics. Additionally, changing the size of the sketch would

2
Notice that in counting Bloom filters and count-min sketch an item’s value is repre-

sented by multiple counters.

(a) Increment of 2

(b) Increment of 4

Figure 3: A scenariowhere 3 items appear only once at differ-
ent times. The default W-TinyLFU with increment 1 grades
all 3 items either as 1 if they happened after the last Reset
or as 0 if they happened before the last Reset. Thus, it can-
not determine which is more recent. In Figure 3a we use an
increment value of 2, which becomes 1 following a Reset op-
eration. Reset operations are also twice as frequent, which
enables one to determine that the orange and green items
appeared more recently than the red one. As there is no Re-
set operation between the orange and green, we cannot de-
termine their order. Figure 3b increases the increment to 4,
which again doubles the number ofResets. In this case, there
is an additional Reset between the orange and the green so
we can detect that orange is more recent than green.

either change the accuracy of the sketch or require dynamic mem-

ory allocation. In contrast, changing the increment value is less

intrusive and is easier to implement in practice.

4.2 Potential Adaptivity Schemes
4.2.1 Hill climbing. Hill Climbing is a simple optimization tech-

nique for searching a local maximum of a function. In our context,

we first change the configuration in a certain direction, e.g., enlarge

the Window cache size. Then we compare the hit ratio obtained

under the new configuration to the previously recorded hit ratio. If

the hit ratio has improved we make an additional step in the same

direction, e.g., continue increasing the window size. Otherwise, we

flip directions andmake a step backward. The hill climber algorithm

is visually explained in Figure 4.

The main benefit of this approach is that we do not need ad-

ditional meta-data to reconfigure the cache. In contrast, previous

adaptive algorithms require meta-data and ghost entries [4, 24].

Hill climbing is a general meta-algorithm and can be used with

many cache policies.

In this algorithm, we first change the cache configuration in a

certain direction and then evaluate the impact on performance. That

is, we take a risk as we do not know if the change benefits the hit

ratio or not. The difficulty in realizing this method is determining



Adaptive Software Cache Management Middleware ’18, December 10–14, 2018, Rennes, France

Figure 4: The hill climber algorithm: In the monitor state,
compare the current hit ratio to the previously obtained one.
If the hit ratio improves thenwe update the configuration in
the same direction. Otherwise, we flip directions and update
the configuration accordingly.

how large each step should be and how frequently to take such a

step, which turns out to be a balancing act.

At first glance, frequent small steps seem appealing. This is

because the penalty for a wrong step is small and the reaction

to changes is quick. The problem with such an approach is that

measuring the hit ratio over a short duration is a noisy process.

Hence, with frequent steps, it is difficult to distinguish between a

change in the hit ratio that was caused by the new configuration

and noise.

This observation led us to make infrequent and relatively large

changes to the policy. Infrequent changes provide us with enough

time to evaluate their effectiveness, and making them relatively

large makes the change in hit ratio more noticeable. In our imple-

mentation, we chose to make steps of 5% to the Window cache

size or of ±1 to the increment size. This means that we alternate

between 21 possible configurations when adapting the window

size (i.e., 0%, 1%, 5%, 10%, etc.) and 15 possible configurations when

adapting the sketch parameter (note that the maximal value of

counters in our W-TinyLFU sketch is 15). Also, we chose a deci-

sion interval of once every 10 times the cache size; this works well

empirically as it allows enough time to evaluate the performance

change of the new configuration.

4.2.2 Frequency-Recency Indicator. Our goal here is to obtain an

indicator that reflects the recency-frequency balance of the trace at

any point in time. Such an indicator selects the proper configuration

directly, rather than gradually taking incremental steps.

The indicator uses the same sketch as the W-TinyLFU filter [13]

for estimating items frequency with an increment value fixed at

1. Thus, when the tuning parameter is the Window cache size of

W-TinyLFU rather than the sketch increment, the indicator method

shares exactly the same sketch with the W-TinyLFU filter.

For each newly arriving item, we sum the sketch estimations

and use the average of these estimations as a hint, which provides

an indication for the bias of the trace. Specifically, we empirically

discovered that low values indicate a frequency biased workload,

higher values indicate a recency bias, while very high values once

again indicate a frequency bias of a very frequency skewed work-

load. Intuitively, if the workload is frequency biased, accesses to the

same item are scattered, leading to relatively low counter values.

In contrast, when the workload is recency biased, accesses to the

(a) Scattered

(b) Recency bias

(c) Frequency skew

Figure 5: A scenario where each period contains 3 accesses.
In Figure 5a each item appears once in each period. Due to
Reset operations, the frequency estimations are always 0, so
the hint equals 0. In Figure 5b the accesses are reordered in
a recency manner. Now the estimations are 0, 1, 2 for each
item. Hence, the hint equals 1. In Figure 5c we changed the
number of times each item appears to illustrate frequency
skewness. The estimations become 0, 1, 0 for the first period
and 1, 2, 0 for the others and the hint becomes 0.77.

same item tend to appear near each other, leading to higher average

counter values for accessed items. Finally, when the workload is

frequency biased with a large frequency skew, a small subset of

items are accessed very frequently, so the hint becomes very high.

Figure 5 exemplifies this intuition.

To distinguish the large frequency skew effect from the high

recency bias effect, we apply another mechanism to estimate the dis-

tribution skew. It is well known that when plotting Zipf distributed

items in a log-log plot whose axes are an item’s rank and its fre-

quency, the result is a straight line whose slope is the frequency

skew parameter. During each configuration period, we gather the

k most frequent items and compute the skew estimation by per-

forming a linear regression over the log-log values of these items.

This calculation is performed infrequently (e.g., once every hundred

multiples of the cache size), which makes it practical.

We combine the hint and the frequency skew estimation (skew)

to forge our desired indicator as follows:

indicator ≜
hint ·

(
1 −min

{
1, skew3

})
maxFreq

wheremaxFreq is the maximum estimation we can get from the

frequency sketch (15 in our settings). Our goal is to end up with

a value close to 1 only if a high hint value appeared as a result of

a recency bias. Thus, high values of the hint will be canceled out

by high values of the skew if there is a high-frequency bias. As the

skew is between [0,1], raising it by a power of 3 drastically separates
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Adaptivity

Parameter

Window Cache Size Sketch Increment

Hill Climber WC-W-TinyLFU WC-FRD SC-W-TinyLFU

Indicator WI-TinyLFU WI-FRD SI-W-TinyLFU

Table 1: Algorithm variants suggested in this work

skew values close to 1 from lower values. The normalization by

maxFreq gives us a value in [0, 1], where 0 indicates a frequency

bias while 1 indicates a recency bias.

5 EVALUATION
In this section, we perform an extensive evaluation of our adap-

tivity mechanisms (hill climber and indicator) and the adaptation

parameters (window cache size and sketch management). We also

evaluate two underlying caching policies W-TinyLFU and FRD,

which were presented in Section 3. Overall, most of our work spans

the 6 different possibilities that are summarized in Table 1: Adapt-

ing the Window (W) cache of W-TinyLFU based on the hill climber

(C) and indicator (I) approaches, yielding WC-W-TinyLFU and

WI-W-TinyLFU respectively. Adapting the Window (W) cache of

FRD based on the hill the climber (C) and indicator (I) approaches,

yielding WC-FRD and WI-FRD respectively. Last, adapting the

W-TinyLFU sketch (S) parameters based on the hill climber (C)

and indicator (I) approaches, yielding SC-W-TinyLFU and SI-W-
TinyLFU respectively. We also report on experimenting with ap-

plying the Mini-Sim approach [31] to adapting the window size of

W-TinyLFU, yieldingMS-W-TinyLFU.
Our experiments are performed in Caffeine’s simulator [23].

The implementation of the competitor policies is taken from that

repository. In each experiment, each policy gets an instance and we

feed that instance the entire workload without warm-up periods.

5.1 Adaptivity Configurations
Below we describe the different configurations considered by the

hill climber and the indicator techniques.

Hill Climber. Hill climber performs an adaptation step once ev-

ery 10 · cacheSize accesses. It starts from 1%Window (or Temporal)

cache and considers all configurations in [0%, 1%, 5%, 10%, . . . , 80%]

for the Window cache, and in [0%, 1%, 5%, 10%, . . . , 100%] in the

Temporal cache. For adjusting the W-TinyLFU sketch, we consider

increment values of [1 − 15], i.e., 15 configurations overall. Recall

that 1% is the initial configuration of [13]. Yet, the authors of [25]

recommend setting the Temporal cache size to 10%; it is interest-

ing to see how our adaptive schemes that start from a different

configuration fare compared to the recommended one.

Indicator. Indicator takes an adaptation decision once every

50, 000 accesses. For configuring the sketch, we use ⌊30 · indicator⌋
at a time with a maximum value of 15. Since the increment of

the sketch has 15 possible values, by multiplying the indicator by

30, an indicator value of 0.5 already sets the increment to 15. The

reason for this is that the affect of the sketch parameter change is

limited compared to changing the window size, so we multiply the

indicator value by 2 when it is used to adjust the sketch increment.

When configuring the Window and Temporal cache size, we use

80 · indicator and 100 · indicator respectively. Particularly, we allo-
cate at most 80% of the total cache size to the Window cache and

at most 100% to the Temporal cache at a time.

5.2 Traces
Our evaluation focuses on 14 real life workloads from diverse do-

mains that include databases, analytic systems, transaction process-

ing, search engines, Windows servers and more. The underlying

characteristics of these vary considerably. Some are very frequency

biased while some contain a mix of frequency and recency and

some are almost entirely recency biased. Clearly, with such a di-

verse selection, no single configuration is suitable for all workloads.

We now list the traces used in this work:

• OLTP: A trace of a file system of an OLTP server [24]. It is

important to note that in a typical OLTP server, most op-

erations are performed on objects already in memory and

thus have no direct reflection on disk accesses. Hence, the

majority of disk accesses are the results of writes to a trans-

action log. That is, the trace mostly includes ascending lists

of sequential blocks accesses sprinkled with a few random

accesses due to an occasional write replay or in-memory

cache misses.

• F1 and F2: Traces of transaction processing taken from two

large financial institutions. The traces are provided by the

UMass trace repository [22]. These are fairly similar in struc-

ture to the OLTP trace for the same reasons mentioned above.

• Wikipedia: A Wikipedia trace containing 10% of the traf-

fic to Wikipedia during two months starting in September

2007 [29].

• DS1: A database trace taken from [24].

• S3: A search engine trace taken from [24].

• WS1,WS2, andWS3: Three additional search engine traces

taken from the UMass repository [22].

• P8 and P12: Windows server disc accesses [24].

• SPC1-likeA synthetic trace created by the authors of ARC [24]

to benchmark storage systems.

• Scarab: A one-hour trace from Scarab Research of product

recommendation lookups for several e-commerce sites of

varying sizes worldwide.

• Gradle: A trace from a distributed build cache that holds the

compiled output so that subsequent builds on different ma-

chines can fetch the results instead of building anew. Due to

machines leveraging local build caches, the distributed cache

is recency-biased as only the latest changes are requested.

This trace was provided by the Gradle project.

5.3 Motivation
We start by showing that for the FRD and W-TinyLFU policies,

there is no single static configuration of its tuning parameters

that is attractive for all traces. Specifically, Figure 6 illustrates the

obtained hit ratios with FRD and W-TinyLFU when varying the
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(a) Frequency biased - S3 (b) Mixed - OLTP (c) Recency biased - Gradle

Figure 6: Evaluation of W-TinyLFU and FRD for different Window (Temporal) cache sizes

Figure 7: Skew estimation for different k’s on theWikipedia
trace (as in 5.2). Empirically, the estimation seems to con-
verge and the benefit from taking k > 70 is insignificant.

total cache size and the relative size of the Window (Temporal)

cache. As can be observed, for the search engine queries the graphs

are monotonically decreasing. That is, for these traces, the smaller

theWindow (Temporal) cache size the better. In contrast, the Gradle

graph favors large Window (Temporal) cache sizes and the larger

the better. In the middle, there is the OLTP trace. In this trace, there

is a maximum which is different for each total cache size (around

15%-30%). Thus, every static selection of parameters favors some

traces over the others.

5.4 Indicator configuration
As mentioned above, estimating the skew parameter requires per-

forming linear regression for the k most frequent items. Intuitively,

large k values mean more accurate skew estimations but impose

increased computations. The default value for k was selected empir-

ically so that it provides reasonable estimations in all tested traces.

Figure 7 shows the results for different K values in the Wikipedia

trace. We selected k = 70 since increasing k beyond 70 does not

yield significantly better estimations.

5.5 Evaluation of the six algorithms
We evaluate here our six proposed algorithms to determine which

is the best. We split the algorithms according to the configuration

parameter they adapt. That is, we compare algorithms that dynam-

ically adjust the Window (Temporal) cache size (WC-W-TinyLFU,

WI-W-TinyLFU, WC-FRD, and WI-FRD) with those that dynami-

cally change the sketch increment (SC-W-TinyLFU, SI-W-TinyLFU).

For each of these parameters, we calculate the “offline” optimal

value as a reference benchmark. This calculation is obtained by

selecting the best static configuration for each data point separately,

i.e., independently for each workload and for each cache size.

5.5.1 Dynamically configured Window cache size. Figure 8 shows
the results for the dynamically configured Window cache size. The

line labeled “offline” is the point-by-point best static configuration
for the given trace, W-TinyLFU(1%) is the default configuration

of Caffeine [13] and FRD the recommended configuration (10%)

in [25].

As shown, in the Windows server (Figure 8a) and in the search

engine trace (Figure 8b), all W-TinyLFU based schemes are nearly

optimal. The adaptive FRD schemes match the recommended one,

but all under-perform compared to the W-TinyLFU based ones. In

the Wikipedia trace (Figure 8c) all schemes are almost identical.

The database trace (Figure 8d) shows a similar story, i.e., W-

TinyLFU based schemes obtain better hit ratios than FRD based ones.

Among W-TinyLFU schemes, WC-W-TinyLFU is slightly worse for

large caches and WI-W-TinyLFU is slightly worse for small caches.

The adaptive FRD schemes manage to meet the performance of its

recommended configuration.

In the transaction processing trace (Figure 8e) the default con-

figuration of W-TinyLFU is worse than the others. However, WI-

W-TinyLFU is marginally better than the rest, meeting the “offline”

results. A similar improvement is seen for the Gradle trace (Fig-

ure 8f), although here the dynamic FRD schemes are marginally

better.

5.5.2 Dynamically configured sketch parameter. Figure 9 evaluates
algorithms that modify the W-TinyLFU sketch parameters, namely
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(a) Windows server - P8 (b) Search engine - S3 (c) Wikipedia accesses

(d) Database trace - DS1 (e) Transaction processing - OLTP (f) Build cache -Gradle

Figure 8: Evaluation ofWindow (Temporal) cache adjustments schemes compared toW-TinyLFU’s optimal static configuration

SI-W-TinyLFU and SC-W-TinyLFU. We compare these to their best

offline configuration “Offline W-TinyLFU”.

For Windows servers (Figure 9a) and in the search engine trace

(Figure 9b), all obtain nearly identical results. In the database trace

(Figure 9c) SC-W-TinyLFU is slightly worse. In OLTP (Figure 9d),

Wikipedia (Figure 9e), and Gradle (Figure 9f), all schemes are very

similar.

In summary, it is unclear which adaptation policy works best:

hill climbing or indicator. Yet, it seems that forW-TinyLFU adapting

the Window cache size is always at least as good as adapting the

sketch parameters. Thus we continue with the two algorithms WC-

W-TinyLFU and WI-W-TinyLFU. The adaptive W-TinyLFU based

schemes are either at par with the FRD based schemes or noticeably

better, depending on the trace andmaintainmuch smaller meta-data

due to the sketch. The adaptive FRD schemes meet the performance

of the recommended configuration even when starting at a non-

recommended one (1%). This highlights the benefits of dynamic

adaptivity: no need to manually explore all traces in order to detect

the best configuration.

5.6 Comparison with other adaptation
mechanisms

Next, we compare our adaption mechanisms with Mini-Sim [31]. To

that end, we configured W-TinyLFU with 101Mini-Sim instances,

each simulating a different possible partition of Window and Main

cache (denoted MS-W-TinyLFU).

As suggested in [31] we enforce Sm - the simulate cache size

- to be ≥ 100 and the sampling ratio to be ≥ 0.001. That is Sm =
max(100, 0.001·C)whereC is the tested cache size and the sampling

ratio is
Sm
C .

The decision interval was configured to be once in 1, 000, 000

accesses. Such a long interval empirically worked the best.

Figure 10 illustrates the results for this evaluation. As can be

observed, in the frequency biased database trace (Figure 10a), WI-

W-TinyLFU is superior to Mini-Sim, especially when the cache size

is large. Mini-Sim also lags in the frequency biased search engine

trace (Figure 10b). These results support our observation that Mini-

Sim’s sampling method is less efficient in frequency biased traces.

In other traces, such as the SPC1 benchmark (Figure 10c) and the

F1 trace (Figure 10d) the Mini-Sim approach works just as well as

WI-W-TinyLFU. In conclusion, while Mini-Sim is a viable solution
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(a) Windows server - P8 (b) Search engine - S3 (c) Database trace - DS1

(d) Transaction Processing - OLTP (e) Wikipedia accesses (f) Build cache -Gradle

Figure 9: Evaluation of sketch’s increment schemes compared to their offline optimal static configuration

(a) Database trace (DS1) (b) Search engine (WS1) (c) Benchmark (SPC1-Like) (d) Transaction processing (F1)

Figure 10: Comparative evaluation of Mini-Sim and our own adaptation techniques and the non-adaptive scheme

for adaptivity, it is lacking in frequency biased traces and small

caches. In contrast, our own hill climber and indicator seem to

provide a more robust adaptivity to the cache. Hence, we continue

the evaluation only with WI-W-TinyLFU and WC-W-TinyLFU.

5.7 Comparative evaluation
In this section, we compare W-TinyLFU, WI-W-TinyLFU, WC-W-

TinyLFU, and FRD to other leading works: ARC [24] and Hyperbolic

caching [7].

Web search traces. Web search traces are typically very frequency

biased, as the server sees an aggregation of searches from many
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(a) Search engine (WS1) (b) Search engine (WS2) (c) Search engine (WS3) (d) Search engine (S3)

Figure 11: Comparative evaluation over web search traces

(a) Benchmark (SPC1-Like) (b) Windows server (P8) (c) Windows server (P12) (d) Database trace (DS1)

Figure 12: Comparative evaluation over storage traces

(a) Transaction processing (OLTP) (b) Transaction processing (F1) (c) Transaction processing (F2)

Figure 13: Comparative evaluation over transaction processing traces

users. Figure 11 shows a comparative evaluation over Web search

traces. Observe that the W-TinyLFU based schemes are always at

the top. In contrast, FRD and hyperbolic caching are the worst for

these workloads. ARC is competitive in the WS2 trace (Figure 11b)
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(a) Wikipedia accesses (Wiki) (b) Build cache (Gradle) (c) E-comerce (Scarab)

Figure 14: Comparative evaluation over other processing traces

and WS3 trace (Figure 11c) but lags behind in the WS1 trace (Fig-

ure 11a) and the S3 trace (Figure 11d). In these traces W-TinyLFU is

the best and our adaptive policies exhibit very close performance.

Storage traces. Figure 12 shows results for a variety of storage

traces, including Windows servers, a database and a benchmark.

In the SPC1-Like benchmark trace (Figure 12a), WI-W-TinyLFU,

WC-W-TinyLFU and W-TinyLFU are the leading policies. FRD,

Hyperbolic and ARC are lagging.

In theWindows server traces P8 (Figure 12b) and P12 (Figure 12c),

W-TinyLFU based schemes are better for smaller caches. For larger

caches, in P8 all the policies yield the same hit ratio and for P12

there is a slight advantage of up to 2% for ARC, FRD, and hyperbolic

caching. Overall, there is no clear winner in these traces.

In the database trace DS1 (Figure 12d), W-TinyLFU and WC-W-

TinyLFU yield the highest hit ratio and are almost indistinguishable

while WI-W-TinyLFU is slightly worse with FRD closely below.

However, all W-TinyLFU based policies are considerably better

than Hyperbolic caching and ARC.

Transaction processing. Figure 13 shows the evaluation over trans-
action processing traces. Such traces often exhibit a mixture recency

and frequency. ARC is competitive in all these traces and the non-

adaptive W-TinyLFU lags behind in the OLTP trace (Figure 13a)

and in the F1 trace (Figure 13b). In contrast, our adaptive algorithms

(WI-W-TinyLFU and WC-W-TinyLFU) and FRD are very similar to

ARC. In all these traces our algorithms are either slightly better than

ARC (OLTP and F2) or are slightly worse (F1) but the differences

are below 1%. In contrast, Hyperbolic caching is only competitive

in the F1 trace and W-TinyLFU only in F2.

Other traces. Figure 14 shows the evaluation for other types of

traces including Wikipedia, Gradle, and Scarab. In the Wikipedia

trace (Figure 14a), all schemes perform similarly with Hyperbolic

caching being marginally worse.

For Gradle (Figure 14b) the default W-TinyLFU is the worst. Such

traces are very recency biased as all requests are for the newest

build. Thus, the fact that a certain build was requested many times

does not indicate that it would be requested again in the future.

WI-W-TinyLFU and WC-W-TinyLFU close the performance gap

and are usually at most 1% from ARC, Hyperbolic, and FRD.

In Scarab (Figure 14c), Hyperbolic caching is the worst and all

other policies achieve very similar hit ratios with at most 1% ad-

vantage to FRD.

5.8 Performance evaluation
Last, we evaluate the computational overheads of our adaptive poli-

cies. Specifically, we measure the completion time of real traces

while simulating the delays incurred by serving cache misses from

various main storage options. We considered miss latencies corre-

sponding to an SSD access, a datacenter access, a disk access and

a WAN (CA to Netherlands) access as reported in the benchmark

project of [27]. We also examined a 0 miss penalty option, denoted

‘none’, which captures the nominal performance overhead of the

cache management scheme. Intuitively, as long as the computa-

tional overheads are negligible compared to the miss penalty, the

completion time would be dominated by the hit-ratio. However, if

a policy is overly complex, it might incur a long completion time

despite its high hit-ratio. The measurements were taken on a single

core of an Intel i5-6500 CPU @ 3.20GHz.

Figure 15 shows result for this evaluation over the OLTP trace

(Figure 15a) and the S3 trace (Figure 15b). From looking at the

‘none’ miss penalty bars, we observe that Hyperbolic caching is

the most computationally intensive policy while ARC is the least

computationally intensive one. WC-W-TinyLFU is almost identical

to W-TinyLFU and WI-W-TinyLFU is a bit more computationally

intensive. Further, all adaptive schemes demonstrated over 100

millions of cache accesses per second (dropped for lack of space).

Next, we examine the OLTP trace (Figure 15a) where WC-W-

TinyLFU and WI-W-TinyLFU yield the highest hit-ratio. As can be

seen, indeed these policies also offer the smallest completion time

for all none zero delays. When we examine the S3 trace (Figure 15b),

we note that W-TinyLFU has the highest hit-ratio. Indeed, it also

has the lowest completion time. Note that our adaptive policies

have very little impact on the completion time and thus preserve the

good properties of W-TinyLFU in this case. Overall, our evaluation
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(a) Transaction Processing (OLTP)

(b) Search Engine (S3)

Figure 15: Effect of the miss penalty on execution time

indicates that the calculation overheads of our adaptive policies do

not hinder the performance even for a DRAM cache whose main

storage is on SSD.

6 DISCUSSION
As been demonstrated in the past and echoed here, no single pre-

viously statically configured existing cache management policy

yields the best hit ratio on every workload and for every cache

size
3
. Hence, finding the best policy for a given system requires

careful studying of its workloads and the performance obtained by

various policies over these workloads. Yet, expecting developers

to perform such a detailed research for each system may not be

practical, and in particular, workloads may not be known apriori. In

this work, we have investigated methods for dynamically adapting

cache management policies to the recency vs. frequency bias of an

imposed workload. Our efforts have focused on instantiating the

well-known hill climbing method to caching and on a novel indi-

cator based scheme. We have applied these methods to the recent

W-TinyLFU and FRD policies [13, 25].

By examining the benefits from adjusting various parameters

of these policies, we concluded that modifying the window size

of W-TinyLFU yields more promising results than adapting its

sketch parameters. Especially, the corresponding adaptive schemes,

WC-W-TinyLFU and WI-W-TinyLFU (for window climber and win-

dow indicator respectively), were always competitive with the best

state-of-the-art policies, and never degraded performance in cases

3
In fact, even existing adaptive policies such as ARC and Hyperbolic caching under-

perform noticeably on some workloads.

W-TinyLFU was already the winning policy. In the case of FRD, the

adaptive schemes matched the performance of the recommended

static configuration in [25] even when started from a non-optimal

configuration. This highlights the fact that adaptivity can yield

best results without knowing apriori the workloads and without

the laborious task of trying different configurations with different

workloads. In terms of CPU overhead, our evaluation showed that

completion times are dominated by the hit-ratios and that the com-

putational overheads of our schemes are negligible, whether the

miss penalty comes from an SSD, a datacenter, a disk or a WAN

access.

When comparing the hill climbing and the indicator approaches,

the latter obtains slightly overall better results and adapts faster (in

one step). Yet, hill climbing is simpler to implement and requires less

space. Hence, in resource constrained environments, hill climbing

may be preferable.

The entire code base used in this paper including the testing

setup is available in open source at [12].
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